The organization of chromatin into higher-order structures influences chromosome function and epigenetic gene regulation. Higher-order chromatin has been proposed to be nucleated by the covalent modification of histone tails and the subsequent establishment of chromosomal subdomains by non-histone modifier factors. Here we show that human SUV39H1 and murine Suv39h1--mammalian homologues of Drosophila Su(var)3-9 and of Schizosaccharomyces pombe clr4--encode histone H3-specific methyltransferases that selectively methylate lysine 9 of the amino terminus of histone H3 in vitro. We mapped the catalytic motif to the evolutionarily conserved SET domain, which requires adjacent cysteine-rich regions to confer histone methyltransferase activity. Methylation of lysine 9 interferes with phosphorylation of serine 10, but is also influenced by pre-existing modifications in the amino terminus of H3. In vivo, deregulated SUV39H1 or disrupted Suv39h activity modulate H3 serine 10 phosphorylation in native chromatin and induce aberrant mitotic divisions. Our data reveal a functional interdependence of site-specific H3 tail modifications and suggest a dynamic mechanism for the regulation of higher-order chromatin.
The chromo and SET domains are conserved sequence motifs present in chromosomal proteins that function in epigenetic control of gene expression, presumably by modulating higher order chromatin. Based on sequence information from the SET domain, we have isolated human (SUV39H1) and mouse (Suv39h1) homologues of the dominant Drosophila modifier of position-effectvariegation (PEV) Su(var)3-9. Mammalian homologues contain, in addition to the SET domain, the characteristic chromo domain, a combination that is also preserved in the Schizosaccharyomyces pombe silencing factor clr4. Chromatin-dependent gene regulation is demonstrated by the potential of human SUV39H1 to increase repression of the pericentromeric white marker gene in transgenic flies. Immunodetection of endogenous Suv39h1/SUV39H1 proteins in a variety of mammalian cell lines reveals enriched distribution at heterochromatic foci during interphase and centromere-specific localization during metaphase. In addition, Suv39h1/SUV39H1 proteins associate with M31, currently the only other characterized mammalian SU(VAR) homologue. These data indicate the existence of a mammalian SU(VAR) complex and define Suv39h1/SUV39H1 as novel components of mammalian higher order chromatin.
Our previous work identified the inner basket of the NPC as a physical activation/protection station for force-tethered, epigenetically silenced genes. Here we show that a specific nucleopore-to-gene-promoter interaction (Nup-PI) is an early physiological event of gene activation. Nup-PI was discovered with chromatin endogenous cleavage (ChEC) experiments that mapped in vivo the genomic interaction sites of the nucleoporin Nup2p fused to microccocal nuclease (Nup2-MN). Strong Nup-PI, cleavage by Nup2-MN, is observed at the promoters of the GAL genes and at HXK1 upon activation of these genes with galactose. Nup-PI at the GAL locus requires Gal4p and the UASg and TATA box elements but not SAGA and active transcription. The physical, activation-dependent interaction of the GAL locus with the NPC basket was confirmed by imaging. Chromosome-wide ChEC studies indicated that Nup-PI occurs at numerous genes. The data identify the NPC basket as a new, integral participant in gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.