We report herein thermally responsive elastin-like polypeptides (ELPs) in a linear AB diblock architecture with an N-terminal peptide ligand that self-assemble into spherical micelles when heated slightly above body temperature. A series of 10 ELP block copolymers (ELP BC s) with different molecular weights and hydrophilic-to-hydrophobic block ratios were genetically synthesized by recursive directional ligation. The self-assembly of these polymers from unimers into micelles was investigated by light scattering, fluorescence spectroscopy and cryo-TEM. These ELP BC s undergo two phase transitions as a function of solution temperature: a unimer to spherical micelle transition at an intermediate temperature, and a micelle to bulk aggregate transition at a higher temperature when the hydrophilic-to-hydrophobic block ratio is between 1:2 and 2:1. The critical micelle temperature is controlled by the length of the hydrophobic block and the size of the micelle is controlled by both the total ELP BC length and hydrophilic-to-hydrophobic block ratio. These polypeptide micelles display a critical micelle concentration in the range of 4-8 μM demonstrating high stability of these structures. These studies have also identified a subset of ELP BC s bearing terminal peptide ligands that are capable of forming multivalent spherical micelles that present multiple copies of the ligand on their corona in the clinically relevant temperature range of 37-42 °C and target cancer cells. These ELP BC s may be useful for drug targeting by thermally triggered multivalency. More broadly, the design rules uncovered by this study should be applicable to the design of other thermally reversible nanoparticles for diverse applications in medicine and biology.
Polymacromonomers consisting of oligostyrene side chains (700 ≤
M
n ≤ 5000 g/mol) and of
a high molar mass polymethacrylate main chain are shown to exhibit a
bottlebrush structure in that the
PMA main chain adopts an extremely stiff conformation (i.e., a Kuhn
statistical segment length of up to
l
k = 2000 Å) which is surrounded by the
expanded but still flexible polystyrene side chains.
Several quantities sensitive to branching density and branching type and to molecular polydispersity can be obtained from quasi-elastic and integrated scattering measurements. These are the geometric and hydrodynamic branching factors (g =
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.