The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross performance of 1652 doubled-haploid maize (Zea mays L.) lines that were genotyped with 56,110 single nucleotide polymorphism markers and phenotyped for five agronomic traits in four to six European environments. The lines are arranged in two diverse half-sib panels representing two major European heterotic germplasm pools. The data set contains 10 related biparental dent families and 11 related biparental flint families generated from crosses of maize lines important for European maize breeding. With this new data set we analyzed genome-based best linear unbiased prediction in different validation schemes and compositions of estimation and test sets. Further, we theoretically and empirically investigated marker linkage phases across multiparental populations. In general, predictive abilities similar to or higher than those within biparental families could be achieved by combining several half-sib families in the estimation set. For the majority of families, 375 half-sib lines in the estimation set were sufficient to reach the same predictive performance of biomass yield as an estimation set of 50 full-sib lines. In contrast, prediction across heterotic pools was not possible for most cases. Our findings are important for experimental design in genome-based prediction as they provide guidelines for the genetic structure and required sample size of data sets used for model training. IN the context of quantitative trait locus (QTL) mapping, multiparental populations have been suggested to be advantageous over biparental families due to their greater allelic diversity and the possibility of evaluating allelic effects in multiple genetic backgrounds (Muranty 1996;Xu 1998;Verhoeven et al. 2006). Especially if the multiparental population consists of several families connected by common parents, they can provide greater power of QTL detection and better resolution of QTL localization compared to individual families (Rebai and Goffinet 1993;Jannink and Jansen 2001;Blanc et al. 2006;Yu et al. 2008;Bardol et al. 2013;Mackay et al. 2014). In the context of genome-based prediction (Meuwissen et al. 2001), accuracies achieved within large biparental families are assumed to be the maximum that can be obtained with a given sample size (Crossa et al. 2014), because of medium allele frequencies, absence of genetic substructure, and equal linkage phases between markers and functional polymorphisms. However, prediction accuracies of newly generated progenies from different crosses will be poor. This is especially true if the respective germplasm exhibits broad allelic diversity and is unrelated to the biparental family from which single nucleotide polymorphism (...
Key message Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. AbstractIn hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-016-2756-5) contains supplementary material, which is available to authorized users.
BackgroundGenomic prediction is becoming a daily tool for plant breeders. It makes use of genotypic information to make predictions used for selection decisions. The accuracy of the predictions depends on the number of genotypes used in the calibration; hence, there is a need of combining data across years. A proper phenotypic analysis is a crucial prerequisite for accurate calibration of genomic prediction procedures. We compared stage-wise approaches to analyse a real dataset of a multi-environment trial (MET) in rye, which was connected between years only through one check, and used different spatial models to obtain better estimates, and thus, improved predictive abilities for genomic prediction. The aims of this study were to assess the advantage of using spatial models for the predictive abilities of genomic prediction, to identify suitable procedures to analyse a MET weakly connected across years using different stage-wise approaches, and to explore genomic prediction as a tool for selection of models for phenotypic data analysis.ResultsUsing complex spatial models did not significantly improve the predictive ability of genomic prediction, but using row and column effects yielded the highest predictive abilities of all models. In the case of MET poorly connected between years, analysing each year separately and fitting year as a fixed effect in the genomic prediction stage yielded the most realistic predictive abilities. Predictive abilities can also be used to select models for phenotypic data analysis. The trend of the predictive abilities was not the same as the traditionally used Akaike information criterion, but favoured in the end the same models.ConclusionsMaking predictions using weakly linked datasets is of utmost interest for plant breeders. We provide an example with suggestions on how to handle such cases. Rather than relying on checks we show how to use year means across all entries for integrating data across years. It is further shown that fitting of row and column effects captures most of the heterogeneity in the field trials analysed.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-646) contains supplementary material, which is available to authorized users.
To satisfy increasing food and nutrient supply requirements for our growing future human population, farmers and staple food producers carry vital responsibilities. Especially farmers with ruminant livestock like dairy cows transform otherwise for human consumption unsuitable fibre into highly nutritious milk and meat. Nevertheless, dairy farmers are challenged increasingly by the consequences of global warming. Economic risks like feed supply and volatile commodity prices need to be balanced, also taking into account the increasing environmental awareness of end-customers. Focusing just on emissions, dairy production is contributing an essential part of the total carbon footprint emitted by the agricultural sector. Since rumen degradability of feed was identified by the Food and Agriculture Organization of the United Nations as one of the most influential parameters in reducing the carbon footprint of dairy farming, the desire to exploit leverage potential for efficiency increases can be considered exceptionally high. Although the positive effects of improved feed, in other words, neutral detergent fibre rumen degradability for dairy farming are well understood, detailed information on the correct management to obtain well digestible feed sources is still missing. Using the smart dairy nutrition ration formulation concept, applying readily on-farm available digitized data and management information the objectives of this study were: 1) to assess the influential parameters which govern neutral detergent fibre rumen degradability of corn silage, using a set of 584 corn silages from multiple years, and 2) to evaluate within an integrated dairy production set up the economic and ecological improvement potential by feeding a subset of 28 different corn silages, including detailed variety information. Results show that the neutral detergent fibre rumen degradability is primarily governed by variety choice and can be four times more important than the correct harvest stage decision. By feeding corn silage varieties with high neutral detergent fibre rumen degradability, monetary income could be increased by ~10% while simultaneously reducing manure accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.