In turbomachinery design, the accurate prediction of the life cycle is one of the most challenging issues. Traditionally, life cycle calculations for radial turbine wheels of turbochargers focus on mechanical loads such as centrifugal and vibration forces. Due to the increase of exhaust gas temperatures in the last years, thermomechanical fatigue in the turbine wheel came more into focus. In order to account for the thermally induced stresses in the turbine wheel as a part of the standard design process, a fast method is required for predicting metal temperatures. In order to develop a suitable method, the mechanisms that cause the thermal stresses have to be understood. Thus, in a first step, a detailed analysis of the temperature fields is conducted in the present paper. Extensive numerical simulations of a thermal shock process are carried out and validated by experimental data from a test rig. Based on the results, the main heat transfer mechanisms are identified, which are crucial for the critical thermal stresses in transient operation. It is shown that these critical stresses mainly depend on local 3D flow structures. With this understanding, two fast methods to calculate the transient temperatures in a radial turbine were developed. The first method is based on a standard method for transient fluid/solid heat transfer. In this standard method, heat transfer coefficients are derived from steady-state computational fluid dynamics (CFD)/conjugate heat transfer (CHT) calculations and are linearly interpolated over the duration of the transient heating or cooling process. In the new method, this interpolation procedure was modified to achieve an exponential behavior of the heat transfer coefficients over the transient process in order to enable a sufficient accuracy. Additionally, a second method was developed. In this method, the specific heat capacity of the solid state is reduced by a “speed up factor” to shorten the duration of the transient heating or cooling process. With the shortened processes, the computing times can be reduced significantly. After the calculations, the resulting times are transferred into realistic heating or cooling times by multiplying them with the speed up factor. The results of both methods are evaluated against experimental data and against the results of a numerical method known from literature. The methods show a good agreement with those data.
In pursuit of flexibility improvements, General Electric has developed a product to warm-keep high/intermediate pressure steam turbines using hot air. In order to optimize the warm-keeping operation and to gain knowledge about the dominant heat transfer phenomena and flow structures, detailed numerical investigations are required. For the sake of the investigation of the warm-keeping process as found in the presented research, single and multistage numerical turbine models were developed. Furthermore, an innovative calculation approach called the equalized timescales method (ET) was applied for the modeling of unsteady conjugate heat transfer (CHT). In the course of the research, the setup of the ET approach has been additionally investigated. Using the ET method, the mass flow rate and the rotational speed were varied to generate a database of warm-keeping operating points. The main goal of this work is to provide a comprehensive knowledge of the flow field and heat transfer in a wide range of turbine warm-keeping operations and to characterize the flow patterns observed at these operating points. For varying values of flow coefficient and angle of incidence, the secondary flow phenomena change from well-known vortex systems occurring in design operation to effects typical for windage, like patterns of alternating vortices and strong backflows. Furthermore, the identified flow patterns have been compared to vortex systems described in cited literature and summarized in the so-called blade vortex diagram. The analysis of heat transfer in turbine warm-keeping operation is additionally provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.