Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that inactivate most of the commonly used β-lactam antibiotics. They have emerged as a major threat to global healthcare. Recently, we identified two novel MBL-like proteins, Maynooth IMipenemase-1 (MIM-1) and Maynooth IMipenemase-2 (MIM-2), in the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Here, we demonstrate that MIM-1 and MIM-2 have catalytic activities comparable to those of known MBLs, but from the pH dependence of their catalytic parameters it is evident that both enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 acidic conditions. Both enzymes require Zn(II) but activity can also be reconstituted with other metal ions including Co(II), Mn(II), Cu(II) and Ca(II). Importantly, the substrate preference of MIM-1 and MIM-2 appears to be influenced by their metal ion composition. Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise biological role(s) of MIM-1 and MIM-2 remains to be established. However, due to the similarity of at least some of their in vitro functional properties to those of known MBLs, MIM-1 and MIM-2 may provide essential structural insight that may guide the design of as of yet elusive clinically useful MBL inhibitors.
Antibiotic resistance is one of the most significant challenges facing global healthcare. Since the 1940s, antibiotics have been used to fight infections, initially with penicillin and subsequently with various derivatives including cephalosporins, carbapenams and monobactams. A common characteristic of these antibiotics is the four-membered β-lactam ring. Alarmingly, in recent years an increasing number of bacteria have become resistant to these antibiotics. A major strategy employed by these pathogens is to use Zn(II)-dependent enzymes, the metallo-β-lactamases (MBLs), which hydrolyse the β-lactam ring. Clinically useful MBL inhibitors are not yet available. Consequently, MBLs remain a major threat to human health. In this review biochemical properties of MBLs are discussed, focusing in particular on the interactions between the enzymes and the functionally essential metal ions. The precise role(s) of these metal ions is still debated and may differ between different MBLs. However, since they are required for catalysis, their binding site may present an alternative target for inhibitor design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.