Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-d-aspartate receptor (NMDAR) coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST) and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons). A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR–mTOR signaling pathway activity and facilitating AMPAR membrane insertion.HighlightsA single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the mammalian target of rapamycin mTOR signaling pathway.The antidepressant-like effects of sarcosine occur through the activated AMPAR–mTOR signaling pathway.Sarcosine could enhance AMPAR membrane insertion via an AMPAR throughput.
BackgroundOxidative stress and large amounts of nitric oxide (NO) have been implicated in the pathophysiology of neuronal injury and neurodegenerative disease. Recent studies have shown that (-)-epigallocatechin gallate (EGCG), one of the green tea polyphenols, has potent antioxidant effects against free radical-mediated lipid peroxidation in ischemia-induced neuronal damage. The purpose of this study was to examine whether EGCG would attenuate neuronal expression of NADPH-d/nNOS in the motor neurons of the lower brainstem following peripheral nerve crush. Thus, young adult rats were treated with EGCG (10, 25, or 50 mg/kg, i.p.) 30 min prior to crushing their hypoglossal and vagus nerves for 30 seconds (left side, at the cervical level). The treatment (pre-crush doses of EGCG) was continued from day 1 to day 6, and the animals were sacrificed on days 3, 7, 14 and 28. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry were used to assess neuronal NADPH-d/nNOS expression in the hypoglossal nucleus and dorsal motor nucleus of the vagus.ResultsIn rats treated with high dosages of EGCG (25 or 50 mg/kg), NADPH-d/nNOS reactivity and cell death of the motor neurons were significantly decreased.ConclusionsThe present evidence indicated that EGCG can reduce NADPH-d/nNOS reactivity and thus may enhance motor neuron survival time following peripheral nerve injury.
Aminoglycoside ototoxicity is a common cause of drug-induced hearing loss. Toxicity is dose related, but some patients may still develop hearing loss even under safe dosage. Apart for genetic idiosyncrasy, indirect evidences imply that ischemia may increase the aminoglycoside ototoxic sensitivity because common clinical situations associated with cochlear ischemia such as noise, sepsis, and shock are known to augment the development of aminoglycoside ototoxicity. At present, a direct interaction of cochlear ischemia and aminoglycoside ototoxicity is still lacking. This study demonstrated a direct evidence of increased gentamicin (GM) ototoxic sensitivity in chronic guinea pig models of transient cochlear ischemia. No permanent auditory changes were observed after a single dose of GM (125 mg/kg) or after transient cochlear ischemia for 30 min. Persistent and significant auditory threshold shift was detected when GM was given after transient cochlear ischemia. Cochlear hair cells and spiral ganglion neurons are the major regions affected. Apoptosis contributes to hair cell death during acute interaction of ischemia and GM ototoxicity. Increased apoptotic cell death was also depicted when GM crossreacted with hypoxia in vitro, using cochlear cell lines. Generation of reactive oxygen species, loss of mitochondrial membrane potential, calcium release, and caspase-dependent apoptotic cell death were shown during the interaction of hypoxia and GM ototoxicity in vitro. This synergistic ototoxicity may be critical to aminoglycoside-induced hearing loss in clinical scenarios. The results should improve our understanding of the interacting mechanism and potential preventive strategy to aminoglycoside ototoxicity.
d-Serine is an amino acid and can work as an agonist at the glycine sites of N-methyl-d-aspartate receptor (NMDAR). Interestingly, both types of glutamatergic modulators, NMDAR enhancers and blockers, can improve depression through common targets, namely alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionaic acid receptors (AMPARs) and mammalian target of rapamycin (mTOR). To elucidate the cellular signaling pathway underlying this counterintuitive observation, we activated NMDARs in rats by using d-serine. Saline, ketamine (NMDAR antagonist), and desipramine (tricyclic antidepressant) were used as controls. The antidepressant-like effects of all agents were evaluated using the forced swim test. The activation of the AMPAR-mTOR signaling pathway, release of brain-derived neurotrophic factor (BDNF), and alteration of AMPAR and NMDAR trafficking in the hippocampus of rats were examined. A single high dose of d-serine exerted an antidepressant-like effect that was mediated by rapid AMPAR-induced mTOR signaling pathway and increased BDNF proteins, identical to that of ketamine. Furthermore, in addition to the increased protein kinase A phosphorylation of the AMPAR subunit GluR1 (an indicator of AMPAR insertion in neurons), treatment with individual optimal doses of d-serine and ketamine also increased adaptin β2-NMDAR association (an indicator of the intracellular endocytic machinery and subsequent internalization of NMDARs). Desipramine did not influence these processes. Our study is the first to demonstrate an association between d-serine and ketamine; following adaptative regulation of AMPAR and NMDAR may lead to common changes of them. These findings provide novel targets for safer antidepressant agents with mechanisms similar to those of ketamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.