The heteroatom-containing porphyrin analogues or core-modified porphyrins that resulted from the replacement of one or two pyrrole rings with other five-membered heterocycles such as furan, thiophene, selenophene, tellurophene, indene, phosphole, and silole are highly promising macrocycles and exhibit quite different physicochemical properties compared to regular azaporphyrins. The properties of heteroporphyrins depend on the nature and number of different heterocycle(s) present in place of pyrrole ring(s). The heteroporphyrins provide unique and unprecedented coordination environments for metals. Unlike regular porphyrins, the monoheteroporphyrins are known to stabilize metals in unusual oxidation states such as Cu and Ni in +1 oxidation states. The diheteroporphyrins, which are neutral macrocycles without ionizable protons, also showed interesting coordination chemistry. Thus, significant progress has been made in last few decades on core-modified porphyrins in terms of their synthesis, their use in building multiporphyrin arrays for light-harvesting applications, their use as ligands to form interesting metal complexes, and also their use for several other studies. The synthetic methods available in the literature allow one to prepare mono- and diheteroporphyrins and their functionalized derivatives, which were used extensively to prepare several covalent and noncovalent heteroporphyrin-based multiporphyrin arrays. The methods are also developed to synthesize different hetero analogues of porphyrin derivatives such as heterocorroles, heterochlorins, heterocarbaporphyrinoids, heteroatom-substituted confused porphyrins, and so on. This Review summarizes the key developments that have occurred in heteroporphyrin chemistry over the last four decades.
Porphyrins and expanded porphyrins have attracted the attention of chemists for a long time in view of their diverse applications in catalysis; as anion, cation, and neutral substrate receptors; as ligands to coordinate large metal ions; as nonlinear optical materials, MRI contrasting agents, and sensitizers for photodynamic therapy (PDT); and more recently as models for aromaticity (both Huckel and Mobius). A diverse range of synthetic expanded porphyrins containing up to 96π electrons have been reported, and their properties have been exploited for various applications. The present Review is only confined to 22π electron expanded porphyrins containing five pyrrole/ heterocyclic rings such as sapphyrins and smaragdyrins. Even though these two macrocycles contain 22π electrons and five pyrrole/heterocyclic rings, they are structurally different. In sapphyrins, the five pyrrole/heterocyclic rings are connected through four meso-carbon bridges and one direct pyrrole−pyrrole bond, whereas in smaragdyrins, the five pyrrole/heterocyclic rings are connected through three mesocarbon bridges and two direct pyrrole−pyrrole bonds. The chemistry of sapphyrins has been well-established in recent years due to the availability of easy and efficient synthetic methods. On the other hand, smaragdyrins are not explored significantly because of their unstable nature. However, recently it was shown that smaragdyrins can be stabilized if one of the pyrrole rings is replaced with a furan ring to afford stable oxasmaragdyrin. The availability of oxasmaragdyrin allowed the exploration of smaragdyrin in recent years. Thus, an attempt has been made in this Review to describe the chemistry of both sapphyrins and smaragdyrins in terms of their synthesis, characterization, metal ion coordination, and anion-recognition properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.