Glibenclamide is a BCS Class II drug and poses a major problem during formulation development. In the present study, adsorption onto various carriers was used to enhance the solubility of glibenclamide. It was observed that solubility of glibenclamide was greatly enhanced by adsorbing onto mesoporous silica. The increase in solubility of poorly soluble drugs is often associated with the generation of supersaturation, which results in the risk of drug precipitation. HPMC E5 was used as precipitation inhibitor to maintain sink condition for a longer duration. A 32 full factorial design was adopted to optimize the ratio of glibenclamide (X1) and mesoporous silica as a carrier (X2) and the effect of different ratios was studied on percent yield, percent drug loading, and percent drug release. X-ray powder diffraction (XRPD) and Differential scanning calorimetry studies were performed to investigate any possible interaction in between glibenclamide and mesoporous silica. An optimum batch of drug adsorbate was used to prepare immediate-release tablets. The tablets prepared were evaluated for thickness, uniformity of weight, hardness, friability, in-vitro disintegration time, and in vitro drug release study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.