This paper aims at extending the existing knowledge regarding the pull-out behavior of single steel fibers embedded in high-and ultra-high-strength concretes with compressive strengths exceeding 100 MPa. Apart from the compressive strength, straight fibers, and fibers with hooked-ends as well as different embedded lengths are considered. The experiments have shown that the bond strength for straight fibers increases with an increasing compressive strength, mechanical anchorage in terms of hooks multiply the load-bearing capacity. For hooked end fibers in ultrahigh performance concrete (UHPC) fiber rupture occurred. Special attention was paid to characterize scatter adequately. Especially for hooked-end fibers in UHPC conventional slip-wise averaging does not represent the maximum load well. Therefore, a more precise approach basing on characteristic points is introduced. The experimental results are presented to be used for calibration and validation of numerical models. As an example, an elasto-plastic phase-field model using a Drucker-Prager yield condition is developed, which represents the pull-out behavior of straight fibers satisfyingly.
K E Y W O R D Shook-end, HPC, phase-field modeling, pull-out test, steel fibers, UHPC
This contribution aims to analyze the deterioration behaviour of steel fibre-reinforced high-performance concrete (HPC) in both experiments as well as numerical simulations. For this purpose, flexural tensile tests are carried out on beams with different fibre contents and suitable damage indicators are established to describe and calibrate the damage behaviour numerically using a phase-field model approach. In addition to conventional measurement methods, the tests are equipped with acoustic emission sensors in order to obtain a more precise picture of crack evolution by observing acoustic events. It is shown that, in addition to classical damage indicators, such as stiffness degradation and absorbed energy, various acoustic indicators, such as the acoustic energy of individual crack events, can also provide information about the damage progress. For the efficient numerical analysis of the overall material behaviour of fibre-reinforced HPC, a phenomenological material model is developed. The data obtained in the experiments are used to calibrate and validate the numerical model for the simulation of three-point bending beam tests. To verify the efficiency of the presented numerical model, the numerical results are compared with the experimental data, e.g., load-CMOD curves and the degradation of residual stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.