This paper describes the design of the robust PI/PID controller for the higher order interval system via its reduced order model using the differential evolution (DE) algorithm. A stable reduced interval model is generated from a higher order interval system using the DE in order to minimize the cost and reduce the complexity of the system. This reduced order interval numerator and denominator polynomials are determined by minimizing the Integral Squared Error (ISE) using the DE. Then, using reduced order interval model, a robust PI/PID controller is designed based on the stability conditions for determining robust stability of interval system. Finally, using these stability conditions, a set of inequalities in terms of controller parameters is obtained from the reduced order closed loop characteristic polynomial. Then these inequalities are solved to obtain robust controller parameters with the help of a DE algorithm. The designed, robust controller from the reduced order interval model will be attributed to the higher order interval system. The designed PI/PID controller from our proposed method not only stabilizes the reduced order model, but also stabilizes the original higher order system. The viability of the proposed methodology is illustrated through the numerical example of its successful implementation. The efficacy of the proposed methodology is also evaluated against the available approaches presented in the literature and the results were successfully implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.