Impact-type penetrators are devices that apply the impact generated by their internal components to penetrate the soil. The penetration effect of the impact-type penetrators is affected by the physical parameters (e.g., mass and stiffness) of their internal constituent elements. Therefore, optimal parameters must be obtained by using a dynamic impact penetrator model to maximize the dive distance of each impact. However, the dynamic impact penetrator models are nonlinear and difficult to describe. Thus, in this paper, this work proposes a segmentation method for modeling the penetrator motion to establish an accurate dynamic model that can be divided into four states. Buffer spring pre-compression, which is introduced as a new influencing parameter to improve the performance of the penetrator, and the genetic algorithm is used for the optimization in accordance with the characteristics of the required optimization parameter set. Parameter stability is then analyzed by considering the actual project application. Then, the control variable method is employed to explore the influence of changing the obtained parameters on the penetration effect. Finally, a processing prototype designed on the basis of the acquired parameters is used for the experimental verification. This work addresses the complexity of the dynamics model of penetration and the difficulty encountered in determining the parameter values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.