CD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46. Since our finding from tumor microarray indicate that CD46 was overexpressed in cancers of the prostate and colon, fiber chimeric Ad5/35 vectors that have infection tropism for CD46 were employed to demonstrate its efficacy in colorectal cancers (CRC). CD46-overexpressed cells showed a significantly higher response to Ad5/35-GFP and to Ad5/35-tk/GCV. While CRC cells express variable levels of CD46, CD46 expression was positively correlated with Ad5/35-mediated GFP fluorescence and accordingly its cell killing. Injection of Ad5/35-tk/GCV caused much greater tumor-suppression in mice bearing CD46-overexpressed cancer xenograft compared to mock group. Analysis of CRC samples revealed that patients with positive CD46 expression had a higher survival rate (p=0.031), carried tumors that were well-differentiated, but less invasive and metastatic, and with a low T stage (all p<0.05). Taken together, our study demonstrated that species B-based adenoviral gene therapy is a suitable approach for generally CD46-overexpressed CRC but would require careful consideration preceding CD46 analysis and categorizing CRC patients.
CD46 is generally overexpressed in many human cancers, representing a prime target for CD46-binding adenoviruses (Ads). This could help to overcome low anti-tumoral activity by coxsackie-adenoviral receptor (CAR)-targeting cancer gene therapy viruses. However, because of scarce side-by-side information about CAR and CD46 expression levels in cancer cells, mixed observations of cancer therapeutic efficacy have been observed. This study evaluated Ad-mediated therapeutic efficacy using either CAR-targeting Ad5 or CD46-targeting Ad5/35 fiber chimera in bladder cancer cell lines. Compared with normal urothelia, bladder cancer tissue generally overexpressed both CAR and CD46. While CAR expression was not correlated with disease progression, CD46 expression was inversely correlated with tumor grade, stage, and risk grade. In bladder cancer cell lines, expression levels of CD46 and CAR were highly correlated with Ad5/35- and Ad5-mediated gene transduction and cytotoxicity, respectively. In a human EJ bladder cancer xenograft mouse model, with either overexpressed or suppressed CD46 expression levels, Ad5/35-tk followed by ganciclovir (GCV) treatment significantly affected tumor growth, whereas Ad5-tk/GCV had only minimal effects. Overall, our findings suggest that bladder cancer cells overexpress both CAR and CD46, and that adenoviral cancer gene therapy targeting CD46 represents a more suitable therapy option than a CAR-targeting therapy, especially in patients with low risk bladder cancers.
The prostate gland contains a high level of intracellular zinc, which is dramatically diminished during prostate cancer (PCa) development. Owing to the unclear role of zinc in this process, therapeutic applications using zinc are limited. This study aimed to clarify the role of zinc and its underlying mechanism in the growth of PCa. ZnCl2 suppressed the proliferation of androgen receptor (AR)-retaining PCa cells, whereas it did not affect AR-deficient PCa cells. In LNCaP and TRAMP-C2 cells, zinc downregulated the expression of AR in a dose- and time-dependent fashion. Zinc-mediated AR suppression accordingly inhibited the androgen-mediated transactivation and expression of the androgen target, prostate specific antigen (PSA). This phenomenon resulted from facilitated protein degradation, not transcriptional control. In studies using mice bearing TRAMP-C2 subcutaneous tumors, the intraperitoneal injection of zinc significantly reduced tumor size. Analyses of both xenograft tumors and normal prostates showed reduced expression of AR and increased cell death. Considering the significant loss of intracellular zinc and the dominant growth-modulating role of AR during PCa development, loss of zinc may be a critical step in the transformation of normal cells to cancer cells. This study provides the underlying mechanism by which zinc functions as a PCa suppressor, and forms the foundation for developing zinc-mediated therapeutics for PCa.
Epidermal growth factor receptor (EGFR) is an effective target for those patients with metastatic colorectal cancers that retain the wild-type RAS gene. However, its efficacy in many cancers, including bladder cancer, is unclear. Here, we studied the in vitro effects of cetuximab monoclonal antibodies (mAbs) targeting EGFR on the bladder cancer cells and role of CD46. Cetuximab was found to inhibit the growth of both colon and bladder cancer cell lines. Furthermore, cetuximab treatment inhibited AKT and ERK phosphorylation in the bladder cancer cells and reduced the expression of CD46 membrane-bound proteins. Restoration of CD46 expression protected the bladder cancer cells from cetuximab-mediated inhibition of AKT and ERK phosphorylation. We hypothesized that CD46 provides protection to the bladder cancer cells against mAb therapies. Bladder cancer cells were also susceptible to cetuximab-mediated immunologic anti-tumor effects. Further, cetuximab enhanced the cell killing by activating both antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in bladder cancer cells. Restoration of CD46 expression protected the cells from both CDC and ADCC induced by cetuximab. Together, CD46 exhibited a cancer-protective effect against both direct (by involvement of PBMC or complement) and indirect cytotoxic activity by cetuximab in bladder cancer cells. Considering its clinical importance, CD46 could be an important link in the action mechanism of ADCC and CDC intercommunication and may be used for the development of novel therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.