The ERA5 reanalysis dataset of the European Center for Medium-Range Weather Forecasts (ECMWF) in the summers from 2015 to 2020 was used to compare and analyze the features of the precipitable water vapor (PWV) observed by six ground-based Global Navigation Satellite System (GNSS) meteorology (GNSS/MET) stations in the Yunnan–Guizhou Plateau. The correlation coefficients of the two datasets ranged between 0.804 and 0.878, the standard deviations ranged between 4.686 and 7.338 mm, and the monthly average deviations ranged between −4.153 and 9.459 mm, which increased with the altitude of the station. Matching the quality-controlled ground precipitation data with the PWV in time and space revealed that most precipitation occurred when the PWV was between 30 and 65 mm and roughly met the normal distribution. We used the vertical integral of divergence of moisture flux (∇p) and S-band Doppler radar networking products combined with the PWV to study the convergence and divergence process and the water vapor delivery conditions during the deep convective weather process from August 24 to 26, 2020, which can be used to analyze the real-time observation capability and continuity of PWV in small-scale and mesoscale weather processes. Furthermore, the 1 h precipitation and the cloud top temperature (ctt) data at the same site were used to demonstrate the effect of PWV on the transit of convective weather systems from different time−space scales.
GPS data during Typhoon Lekima at 700 stations in China were processed by the Precise Point Positioning (PPP) method. A refined regional Tm model was used to derive the precipitable water vapor (PWV) at these GPS stations. Spatio-temporal variations of PWV with the typhoon process were analyzed. As the typhoon approached, PWV at stations near the typhoon center increased sharply from about 50 mm to nearly 80 mm and then dropped back to about 40–50 mm as the typhoon left. Comparisons of GPS, radiosonde, the Global Data Assimilation System (GDAS) Global Forecast System (GFS) analysis products and ERA5 reanalysis products at four matched GPS-RS stations show overall overestimations of PWV from radiosonde, GFS and ERA5 compared with GPS in a statistical perspective. An empirical orthogonal functions (EOF) analysis of the PWV during the typhoon event revealed some different patterns of variability, with both the first EOF (~36.1% of variance) and second EOF (~30.3% of variance) showing distinctively large anomalies over the typhoon landing locations. The typhoon caused a large horizontal tropospheric gradient (HTG) with the magnitude reaching 5 mm and the direction pointing to the typhoon center when it made a landfall on mainland China. The magnitude and the consistency of the HTG direction decreased overall as the typhoon weakened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.