Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.
Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.