Poly Ether Ether Ketone (PEEK) is a very promising engineering thermoplastic material having capability to perform over wide service temperatures from cryogenic to around 300°C. Processing of PEEK is a challenging task, owing to its physical, thermo physical properties and chemical nature. The present paper envisages processing of PEEK by two different techniques viz, 3D printing and extrusion and assessment of properties of respective specimens at 30°C and −196°C. Thermal and mechanical properties and fracture morphological features of PEEK specimen, processed using these techniques are compared. Samples processed by extrusion possessed higher mechanical properties both at 30°C and −196°C. The 3D printed samples, though exhibited inferior strength and modulus, showed significantly higher elongation (150–250%) at 30°C. All samples showed ductile fracture behavior at 30°C. At −196°C, the fracture morphology got transformed in to a pattern typical of brittle materials, as expected. Extruded specimens showed lower thermal expansion coefficient compared to the 3D printed specimens. Thermal expansion characteristics were different in the X, Y and Z directions for 3D printed specimens due to the anisotropy resulting from printing direction which is corroborated by the morphological studies. The results of this investigation enable designing and fabrication of PEEK based structural components of desired geometries for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.