A dynamic adaptive numerical method for solving partial differential equations on the sphere is developed. The method is based on second generation spherical wavelets on almost uniform nested spherical triangular grids, and is an extension of the adaptive wavelet collocation method to curved manifolds. Wavelet decomposition is used for grid adaption and interpolation. An O(N ) hierarchical finite difference scheme based on the wavelet multilevel decomposition is used to approximate Laplace-Beltrami, Jacobian and flux-divergence operators. The accuracy and efficiency of the method is demonstrated using linear and nonlinear examples relevant to geophysical flows. Although the present paper considers only the sphere, the strength of this new method is that it can be extended easily to other curved manifolds by considering appropriate coarse approximations to the desired manifold (here we used the icosahedral approximation to the sphere at the coarsest level).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.