Wireless ad-hoc sensor networks have emerged as an interesting and important research area in the last few years. The applications envisioned for such networks require collaborative execution of a distributed task amongst a large set of sensor nodes. This is realized by exchanging messages that are timestamped using the local clocks on the nodes. Therefore, time synchronization becomes an indispensable piece of infrastructure in such systems. For years, protocols such as NTP have kept the clocks of networked systems in perfect synchrony. However, this new class of networks has a large density of nodes and very limited energy resource at every node; this leads to scalability requirements while limiting the resources that can be used to achieve them. A new approach to time synchronization is needed for sensor networks.In this paper, we present Timing-sync Protocol for Sensor Networks (TPSN) that aims at providing network-wide time synchronization in a sensor network. The algorithm works in two steps. In the first step, a hierarchical structure is established in the network and then a pair wise synchronization is performed along the edges of this structure to establish a global timescale throughout the network. Eventually all nodes in the network synchronize their clocks to a reference node. We implement our algorithm on Berkeley motes and show that it can synchronize a pair of neighboring motes to an average accuracy of less than 20µs. We argue that TPSN roughly gives a 2x better performance as compared to Reference Broadcast Synchronization (RBS) and verify this by implementing RBS on motes. We also show the performance of TPSN over small multihop networks of motes and use simulations to verify its accuracy over large-scale networks.We show that the synchronization accuracy does not degrade significantly with the increase in number of nodes being deployed, making TPSN completely scalable.
Deep neural networks (DNNs) are vulnerable to adversarial examples, perturbations to correctly classified examples which can cause the model to misclassify. In the image domain, these perturbations are often virtually indistinguishable to human perception, causing humans and state-of-the-art models to disagree. However, in the natural language domain, small perturbations are clearly perceptible, and the replacement of a single word can drastically alter the semantics of the document. Given these challenges, we use a black-box population-based optimization algorithm to generate semantically and syntactically similar adversarial examples that fool well-trained sentiment analysis and textual entailment models with success rates of 97% and 70%, respectively. We additionally demonstrate that 92.3% of the successful sentiment analysis adversarial examples are classified to their original label by 20 human annotators, and that the examples are perceptibly quite similar. Finally, we discuss an attempt to use adversarial training as a defense, but fail to yield improvement, demonstrating the strength and diversity of our adversarial examples. We hope our findings encourage researchers to pursue improving the robustness of DNNs in the natural language domain.
As mobile phones advance in functionality and capability, they are being used for more than just communication. Increasingly, these devices are being employed as instruments for introspection into habits and situations of individuals and communities. Many of the applications enabled by this new use of mobile phones rely on contextual information. The focus of this work is on one dimension of context, the transportation mode of an individual when outside. We create a convenient (no specific position and orientation setting) classification system that uses a mobile phone with a built-in GPS receiver and an accelerometer. The transportation modes identified include whether an individual is stationary, walking, running, biking, or in motorized transport. The overall classification system consists of a decision tree followed by a first-order discrete Hidden Markov Model and achieves an accuracy level of 93.6% when tested on a dataset obtained from sixteen individuals.
Sensor network technology promises a vast increase in automatic data collection capabilities through efficient deployment of tiny sensing devices. The technology will allow users to measure phenomena of interest at unprecedented spatial and temporal densities. However, as with almost every data-driven technology, the many benefits come with a significant challenge in data reliability. If wireless sensor networks are really going to provide data for the scientific community, citizen-driven activism, or organizations which test that companies are upholding environmental laws, then an important question arises: How can a user trust the accuracy of information provided by the sensor network? Data integrity is vulnerable to both node and system failures. In data collection systems, faults are indicators that sensor nodes are not providing useful information. In data fusion systems the consequences are more dire; the final outcome is easily affected by corrupted sensor measurements, and the problems are no longer visibly obvious.In this article, we investigate a generalized and unified approach for providing information about the data accuracy in sensor networks. Our approach is to allow the sensor nodes to develop a community of trust. We propose a framework where each sensor node maintains reputation metrics which both represent past behavior of other nodes and are used as an inherent aspect in predicting their future behavior. We employ a Bayesian formulation, specifically a beta reputation system, for the algorithm steps of reputation representation, updates, integration and trust evolution. This framework is available as a middleware service on motes and has been ported to two sensor network operating systems, TinyOS and SOS. We evaluate the efficacy of this framework using multiple contexts: (1) a lab-scale test bed of Mica2 motes, (2) Avrora simulations, and (3) real data sets collected from sensor network deployments in James Reserve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.