Many domains are trying to integrate with the Internet of Things (IoT) ecosystem, such as public administrations starting smart city initiatives all over the world. Cities are becoming smart in many ways: smart mobility, smart buildings, smart environment and so on. However, the problem of non-interoperability in the IoT hinders the seamless communication between all kinds of IoT devices. Different domain specific IoT applications use different interoperability standards. These standards are usually not interoperable with each other. IoT applications and ecosystems therefore tend to use a vertical communication model that does not allow data sharing horizontally across different IoT ecosystems. In 2014, The Open Group published two domain-independent IoT messaging standards, O-MI and O-DF, aiming to solve the interoperability problem. In this article we describe the practical use of O-MI/O-DF standards for reaching interoperability in a mobile application for the smart city context, in particular for the Smart Mobility domain, electric vehicle (EV) charging case study. The proof-of-concept of the smart EV charging ecosystem with mobile application user interface was developed as a part of an EU (Horizon 2020) Project bIoTope.
This paper proposes an explainable machine learning tool that can potentially be used for decision support in medical image analysis scenarios. For a decision-support system it is important to be able to reverse-engineer the impact of features on the final decision outcome. In the medical domain, such functionality is typically required to allow applying machine learning to clinical decision making. In this paper, we present initial experiments that have been performed on in-vivo gastral images obtained from capsule endoscopy. Quantitative analysis has been performed to evaluate the utility of the proposed method. Convolutional neural networks have been used for training the validating of the image data set to provide the bleeding classifications. The visual explanations have been provided in the images to help health professionals trust the black box predictions. While the paper focuses on the in-vivo gastral image use case, most findings are generalizable.
Today's largest and fastest growing companies' assets are no longer physical, but rather digital (software, algorithms. . . ). This is all the more true in the manufacturing, and particularly in the maintenance sector where quality of enterprise maintenance services are closely linked to the quality of maintenance data reporting procedures. If quality of the reported data is too low, it can results in wrong decision-making and loss of money. Furthermore, various maintenance experts are involved and directly concerned about the quality of enterprises' daily maintenance data reporting (e.g., maintenance planners, plant managers. . . ), each one having specific needs and responsibilities. To address this Multi-Criteria Decision Making (MCDM) problem, and since data quality is hardly considered in existing expert maintenance systems, this paper develops a Maintenance Reporting Quality Assessment (MRQA) dashboard that enables any company stakeholder to easily -and in real-time -assess/rank company branch offices in terms of maintenance reporting quality. From a theoretical standpoint, AHP is used to integrate various data quality dimensions as well as expert preferences. A use case describes how the proposed MRQA dashboard is being used by a Finnish multinational equipment manufacturer to assess and enhance reporting practices in a specific or a group of branch offices.
IoT systems may provide information from different sensors that may reveal potentially confidential data, such as a person's presence or not. The primary question to address is how we can identify the sensors and other devices in a reliable way before receiving data from them and using or sharing it. In other words, we need to verify the identity of sensors and devices. A malicious device could claim that it is the legitimate sensor and trigger security problems. For instance, it might send false data about the environment, harmfully affecting the outputs and behavior of the system. For this purpose, using only primary identity values such as IP address, MAC address, and even the public-key cryptography key pair is not enough since IPs can be dynamic, MACs can be spoofed, and cryptography key pairs can be stolen. Therefore, the server requires supplementary security considerations such as contextual features to verify the device identity. This paper presents a measurement-based method to detect and alert false data reports during the reception process by means of sensor behavior. As a proof of concept, we develop a classification-based methodology for device identification, which can be implemented in a real IoT scenario.
Abstract-The Industrial Internet promises to radically change and improve many industry's daily business activities, from simple data collection and processing to context-driven, intelligent and pro-active support of workers' everyday tasks and life. The present paper first provides insight into a typical industrial internet application architecture, then it highlights one fundamental arising contradiction: "Who owns the data is often not capable of analyzing it". This statement is explained by imaging a visionary data supply chain that would realize some of the Industrial Internet promises. To concretely implement such a system, recent standards published by The Open Group are presented, where we highlight the characteristics that make them suitable for Industrial Internet applications. Finally, we discuss comparable solutions and concludes with new business use cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.