We investigate texture classification from single images obtained under unknown viewpoint and illumination. A statistical approach is developed where textures are modelled by the joint probability distribution of filter responses. This distribution is represented by the frequency histogram of filter response cluster centres (textons). Recognition proceeds from single, uncalibrated images and the novelty here is that rotationally invariant filters are used and the filter response space is low dimensional.Classification performance is compared with the filter banks and methods of Leung and Malik [IJCV, 2001], Schmid [CVPR, 2001] and Cula and Dana [IJCV, 2004] and it is demonstrated that superior performance is achieved here. Classification results are presented for all 61 materials in the Columbia-Utrecht texture database.We also discuss the effects of various parameters on our classification algorithm-such as the choice of filter bank and rotational invariance, the size of the texton dictionary as well as the number of training images used. Finally, we present a method of reliably measuring relative orientation co-occurrence statistics in a rotationally invariant manner, and discuss whether incorporating such information can enhance the classifier's performance.
In this paper, we investigate material classification from single images obtained under unknown viewpoint and illumination. It is demonstrated that materials can be classified using the joint distribution of intensity values over extremely compact neighborhoods (starting from as small as 3 \times 3 pixels square) and that this can outperform classification using filter banks with large support. It is also shown that the performance of filter banks is inferior to that of image patches with equivalent neighborhoods. We develop novel texton-based representations which are suited to modeling this joint neighborhood distribution for Markov random fields. The representations are learned from training images and then used to classify novel images (with unknown viewpoint and lighting) into texture classes. Three such representations are proposed and their performance is assessed and compared to that of filter banks. The power of the method is demonstrated by classifying 2,806 images of all 61 materials present in the Columbia-Utrecht database. The classification performance surpasses that of recent state-of-the-art filter bank-based classifiers such as Leung and Malik (IJCV 01), Cula and Dana (IJCV 04), and Varma and Zisserman (IJCV 05). We also benchmark performance by classifying all of the textures present in the UIUC, Microsoft Textile, and San Francisco outdoor data sets. We conclude with discussions on why features based on compact neighborhoods can correctly discriminate between textures with large global structure and why the performance of filter banks is not superior to that of the source image patches from which they were derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.