We present a technique that uncovers the Lagrangian building blocks of turbulence, and apply this technique to a quasi-two-dimensional turbulent flow experiment. Our analysis identifies an intricate network of attracting and repelling material lines. This chaotic tangle, the Lagrangian skeleton of turbulence, shows a level of complexity found previously only in theoretical and numerical examples of strange attractors. We quantify the strength (hyperbolicity) of each material line in the skeleton and demonstrate dramatically different mixing properties in different parts of the tangle.
We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of . This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.
In addition to being observable in laboratory experiments, internal wave beams are reported in geophysical settings, which are characterized by non-uniform density stratifications. Here, we perform a combined theoretical and experimental study of the propagation of internal wave beams in non-uniform density stratifications. Transmission and reflection coefficients, which can differ greatly for different physical quantities, are determined for sharp density-gradient interfaces and finite-width transition regions, accounting for viscous dissipation. Thereafter, we consider even more complex stratifications to model geophysical scenarios. We show that wave beam ducting can occur under conditions that do not necessitate evanescent layers, obtaining close agreement between theory and quantitative laboratory experiments. The results are also used to explain recent field observations of a vanishing wave beam at the Keana Ridge, Hawaii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.