LGBTQ+ (lesbian, gay, bisexual, transgender, queer) individuals are at significantly higher risk for mental health challenges than the general population. Social media and online communities provide avenues for LGBTQ+ individuals to have safe, candid, semi-anonymous discussions about their struggles and experiences. We study minority stress through the language of disclosures and self-experiences on the r/lgbt Reddit community. Drawing on Meyer's minority stress theory, and adopting a combined qualitative and computational approach, we make three primary contributions, 1) a theoretically grounded codebook to identify minority stressors across three types of minority stress-prejudice events, perceived stigma, and internalized LGBTphobia, 2) a machine learning classifier to scalably identify social media posts describing minority stress experiences, that achieves an AUC of 0.80, and 3) a lexicon of linguistic markers, along with their contextualization in the minority stress theory. Our results bear implications to influence public health policy and contribute to improving knowledge relating to the mental health disparities of LGBTQ+ populations. We also discuss the potential of our approach to enable designing online tools sensitive to the needs of LGBTQ+ individuals.
Assessing performance in the workplace typically relies on subjective evaluations, such as, peer ratings, supervisor ratings and self assessments, which are manual, burdensome and potentially biased. We use objective mobile sensing data from phones, wearables and beacons to study workplace performance and offer new insights into behavioral patterns that distinguish higher and lower performers when considering roles in companies (i.e., supervisors and non-supervisors) and different types of companies (i.e., high tech and consultancy). We present initial results from an ongoing year-long study of N=554 information workers collected over a period ranging from 2-8.5 months. We train a gradient boosting classifier that can classify workers as higher or lower performers with AUROC of 0.83. Our work opens the way to new forms of passive objective assessment and feedback to workers to potentially provide week by week or quarter by quarter guidance in the workplace.
Several psychologists posit that performance is not only a function of personality but also of situational contexts, such as day-level activities. Yet in practice, since only personality assessments are used to infer job performance, they provide a limited perspective by ignoring activity. However, multi-modal sensing has the potential to characterize these daily activities. This paper illustrates how empirically measured activity data complements traditional effects of personality to explain a worker's performance. We leverage sensors in commodity devices to quantify the activity context of 603 information workers. By applying classical clustering methods on this multisensor data, we take a person-centered approach to describe workers in terms of both personality and activity. We encapsulate both these facets into an analytical framework that we call organizational personas. On interpreting these organizational personas we find empirical evidence to support that, independent of a worker's personality, their activity is associated with job performance. While the effects of personality are consistent with the literature, we find that the activity is equally effective in explaining organizational citizenship behavior and is less but significantly effective for task proficiency and deviant behaviors. Specifically, personas that exhibit a daily-activity pattern with fewer location visits, batched phone-use, shorter desk-sessions and longer sleep duration, tend to perform better on all three performance metrics. Organizational personas are a descriptive framework to identify the testable hypotheses that can disentangle the role of malleable aspects like activity in determining the performance of a worker population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.