The smallest flying insects with body lengths under 2 mm show a marked preference for wings consisting of a thin membrane with long bristles, and the use of clap and fling kinematics to augment lift at Reynolds numbers (Re) of approximately 10. Bristled wings have been shown to reduce drag forces in clap and fling, but the aerodynamic roles of several bristled wing geometric variables remain unclear. This study examines the effects of varying the ratio of membrane area (A M ) to total wing area (A T ) on aerodynamic forces and flow structures generated during clap and fling at Re on the order of 10. We also examine the aerodynamic consequences of scaling bristled wings to Re = 120, relevant to flight of fruit flies. We analyzed published forewing images of 25 species of thrips (Thysanoptera) and found that A M /A T ranged from 14% to 27%, as compared to 11% to 88% previously reported for smaller-sized fairyflies (Hymenoptera). These data were used to develop physical bristled wing models with A M /A T ranging from 15% to 100%, which were tested in a dynamically scaled robotic clap and fling model. At all Re, bristled wings produced slightly lower lift coefficients (C L ) when compared to solid wings, but provided significant drag reduction. At Re = 10, largest values of peak lift over peak drag ratios were generated by wing models with A M /A T similar to thrips forewings (15% to 30%). Circulation of the leading edge vortex and trailing edge vortex decreased with decreasing A M /A T during clap and fling at Re = 10. Decreased chordwise circulation near the wing tip, vortex shedding, and interaction between flow structures from clap with those from fling resulted in lowering C L generated via clap and fling at Re = 120 as compared to Re = 10. Clap and fling becomes less beneficial at Re = 120, regardless of the drag reduction provided by bristled wings.
Upside-down jellyfish, Cassiopea, are prevalent in warm and shallow parts of the oceans throughout the world. They are unique among jellyfish in that they rest upside down against the substrate and extend their oral arms upwards. This configuration allows them to continually pull water along the substrate, through their oral arms, and up into the water column for feeding, nutrient and gas exchange, and waste removal. Although the hydrodynamics of the pulsation of jellyfish bells has been studied in many contexts, it is not clear how the presence or absence of the substrate alters the bulk flow patterns generated by Cassiopea medusae. In this paper, we use three-dimensional (3D) particle tracking velocimetry and 3D immersed boundary simulations to characterize the flow generated by upside-down jellyfish. In both cases, the oral arms are removed, which allows us to isolate the effect of the substrate. The experimental results are used to validate numerical simulations, and the numerical simulations show that the presence of the substrate enhances the generation of vortices, which in turn augments the upward velocities of the resulting jets. Furthermore, the presence of the substrate creates a flow pattern where the water volume within the bell is ejected with each pulse cycle. These results suggest that the positioning of the upside-down jellyfish such that its bell is pressed against the ocean floor is beneficial for augmenting vertical flow and increasing the volume of water sampled during each pulse.
Despite the large number of studies of intraventricular filling dynamics for potential clinical applications, little is known as to how the diastolic vortex ring properties are altered with reduction in internal volume of the cardiac left ventricle (LV). The latter is of particular importance in LV diastolic dysfunction and in congenital diseases such as hypertrophic cardiomyopathy (HCM), where LV hypertrophy can reduce LV internal volume. We hypothesized that peak circulation and the rate of decay of circulation of the diastolic vortex would be altered with reducing end diastolic volume (EDV) due to increasing confinement. We tested this hypothesis on physical models of normal LV and HCM geometries, under identical prescribed inflow profiles and for multiple EDVs, using time-resolved particle image velocimetry measurements on a left heart simulator. Formation and pinch-off of the vortex ring were nearly unaffected with changes to geometry and EDV. Pinch-off occurred before the end of early filling (E-wave) in all test conditions. Peak circulation of the vortex core near the LV outflow tract increased with lowering EDV and was lowest for the HCM model. The rate of decay of normalized circulation in dimensionless formation time (T*) increased with decreasing EDV. When using a modified version of T* that included average LV cross-sectional area and EDV, normalized circulation of all EDVs collapsed closely in the normal LV model (10% maximum difference between EDVs). Collectively, our results show that LV shape and internal volume play a critical role in diastolic vortex ring dynamics.
Studies of flow through the human airway have shown that inhalation time (IT) and secondary flow structures can play important roles in particle deposition. However, the effects of varying IT in conjunction with the respiratory rate (RR) on airway flow remain unknown. Using three-dimensional numerical simulations of oscillatory flow through an idealized airway model (consisting of a mouth, glottis, trachea, and symmetric double bifurcation) at a trachea Reynolds number (Re) of 4200, we investigated how varying the ratio of IT to breathing time (BT) from 25% to 50% and RR from 10 breaths per minute (bpm) corresponding to a Womersley number (Wo) of 2.41 to 1000 bpm (Wo = 24.1) impacts airway flow characteristics. Irrespective of IT/BT, axial flow during inhalation at tracheal cross-sections was non-uniform for Wo = 2.41, as compared to centrally concentrated distribution for Wo = 24.1. For a given Wo and IT/BT, both axial and secondary (lateral) flow components unevenly split between left and right branches of a bifurcation. Irrespective of Wo, IT/BT and airway generation, lateral dispersion was a stronger transport mechanism than axial flow streaming. Discrepancy in the oscillatory flow relation Re/Wo2 = 2L/D (L = stroke length; D = trachea diameter) was observed for IT/BT ≠ 50%, as L changed with IT/BT. We developed a modified dimensionless stroke length term including IT/BT. While viscous forces and convective acceleration were dominant for lower Wo, unsteady acceleration was dominant for higher Wo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.