BackgroundDelayed or no response to impending patient safety–related calls, poor care provider experience, low job satisfaction, and adverse events are all unwanted outcomes of alarm fatigue. Nurses often cite increases in alarm-related workload as a reason for alarm fatigue, which is a major contributor to the aforementioned unwanted outcomes. Increased workload affects both the care provider and the patient. No studies to date have evaluated the workload while caring for patients and managing alarms simultaneously and related it to the primary measures of alarm fatigue—alarm response rate and care provider experience. Many studies have assessed the effect of modifying the default alarm setting; however, studies on the perceived workload under different alarm settings are limited.ObjectiveThis study aimed to assess nurses’ or assistants’ perceived workload index of providing care under different clinical alarm settings and establish the relationship between perceived workload, alarm response rate, and care provider experience.MethodsIn a clinical simulator, 30 participants responded to alarms that occurred on a physiological monitor under 2 conditions (default and modified) for a given clinical condition. Participants completed a National Aeronautics and Space Administration-Task Load Index questionnaire and rated the demand experienced on a 20-point visual analog scale with low and high ratings. A correlational analysis was performed to assess the relationships between the perceived workload score, alarm response rate, and care provider experience.ResultsParticipants experienced lower workloads when the clinical alarm threshold limits were modified according to patients’ clinical conditions. The workload index was higher for the default alarm setting (57.60 [SD 2.59]) than for the modified alarm setting (52.39 [SD 2.29]), with a statistically significant difference of 5.21 (95% CI 3.38-7.04), t28=5.838, P<.05. Significant correlations were found between the workload index and alarm response rate. There was a strong negative correlation between alarm response rate and perceived workload, ρ28=−.54, P<.001 with workload explaining 29% of the variation in alarm response rate. There was a moderate negative correlation between the experience reported during patient care and the perceived workload, ρ28=−.49, P<.05.ConclusionsThe perceived workload index was comparatively lower with alarm settings modified for individual patient care than in an unmodified default clinical alarm setting. These findings demonstrate that the modification of clinical alarm limits positively affects the number of alarms accurately addressed, care providers’ experience, and overall satisfaction. The findings support the removal of nonessential alarms based on patient conditions, which can help care providers address the remaining alarms accurately and provide better patient care.
The present paper presents cyclic strain amplitude and longitudinal strain measurements of longitudinally compressed Terfenol-D particle samples subjected to magneto-strain cycling. A comparison is made of the responses of material strain cycle tested at temperatures near the matrix glass transition start temperature, and material strain cycle tested at a temperature near the matrix glass transition finish temperature. The cyclic strain amplitude of the material was significantly larger when tested at a temperature near the matrix glass transition finish temperature. A useful range of longitudinal applied stress exists where the composite suffers little apparent degradation. Beyond this range the composite exhibits steadily decreasing cyclic strain amplitude with increases in longitudinal compressive stress magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.