This article is dedicated to the memory of Michael G. Rossmann. Dating back to the last universal common ancestor, P-loop NTPases and Rossmanns comprise the most ubiquitous and diverse enzyme lineages. Despite similarities in their overall architecture and phosphate binding motif, a lack of sequence identity and some fundamental structural differences currently designates them as independent emergences. We systematically searched for structure and sequence elements shared by both lineages. We detected homologous segments that span the first βαβ motif of both lineages, including the phosphate binding loop and a conserved aspartate at the tip of β2. The latter ligates the catalytic metal in P-loop NTPases, while in Rossmanns it binds the nucleotide’s ribose moiety. Tubulin, a Rossmann GTPase, demonstrates the potential of the β2-Asp to take either one of these two roles. While convergence cannot be completely ruled out, we show that both lineages likely emerged from a common βαβ segment that comprises the core of these enzyme families to this very day.
Mutual gliding motility A (MglA), a small Ras-like GTPase; Mutual gliding motility B (MglB), its GTPase activating protein (GAP); and Required for Motility Response Regulator (RomR), a protein that contains a response regulator receiver domain, are major components of a GTPase-dependent biochemical oscillator that drives cell polarity reversals in the bacterium Myxococcus xanthus. We report the crystal structure of a complex of M. xanthus MglA and MglB, which reveals that the C-terminal helix (Ct-helix) from one protomer of the dimeric MglB binds to a pocket distal to the active site of MglA. MglB increases the GTPase activity of MglA by reorientation of key catalytic residues of MglA (a GAP function) combined with allosteric regulation of nucleotide exchange by the Ct-helix (a guanine nucleotide exchange factor [GEF] function). The dual GAP-GEF activities of MglB accelerate the rate of GTP hydrolysis over multiple enzymatic cycles. Consistent with its GAP and GEF activities, MglB interacts with MglA bound to either GTP or GDP. The regulation is essential for cell polarity, because deletion of the Ct-helix causes bipolar localization of MglA, MglB, and RomR, thereby causing reversal defects in M. xanthus. A bioinformatics analysis reveals the presence of Ct-helix in homologues of MglB in other bacterial phyla, suggestive of the prevalence of the allosteric mechanism among other prokaryotic small Ras-like GTPases.
Two small Ras‐like GTPases, MglA and SofG, work in synchrony to drive cell polarity and motility in the soil bacterium, Myxococcus xanthus. While MglA regulates two types of motility in Myxococcus and drives cell polarity reversals, SofG regulates social motility enabled by the type IV pili (T4P) machinery. In order to understand the molecular basis of how multiple GTPases act concertedly, we initiated biochemical studies on SofG. A construct of SofG (SofG∆60) was purified as a homogenous monomer and could bind to GDP and GTP. Intrinsic GTP hydrolysis by SofG∆60 was negligible. Earlier work from the laboratory revealed that MglB functions both as a GTPase‐activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. Biochemical assays of SofG∆60 established that MglB interacts with GTP‐bound SofG∆60 and acts as a GAP for SofG∆60. Interaction of MglB with SofG∆60 in the GDP‐bound conformation was not observed, thereby suggesting that MglB might not act as a GEF for SofG∆60. The existence of a common GAP for both SofG and MglA could potentially contribute to concerted regulation of their GTPase activities, and mediate crosstalk between the two GTPases involved in motility of M. xanthus. Sequence analysis revealed the features for a SofG‐like subclass of prokaryotic small Ras‐like GTPases that enable MglB to act as a dual‐specificity GAP.
Cell polarity oscillations inMyxococcus xanthusmotility are driven by a prokaryotic small Ras-like GTPase, MglA, which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GAP (GTPase activating protein) and a GEF (guanine nucleotide exchange factor) for MglA. With an aim to dissect the role of asymmetry in the dual GAP and GEF activities of MglB, we generated a functional MglAB complex by co-expressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1linked to MglA or MglB2) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal β-strand of MglB1and β0of MglA is essential for the GEF activity of MglB. Specific residues of MglB2which interact with Switch-I of MglA partially contribute to its GAP activity. Thus, the role of the MglB2protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops by steric hindrance. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.