Nowaday's cloud computing provides lot of computation power and storage capacity to the users can be share their private data. To providing the security to the users sensitive data is challenging and difficult one in a cloud environment. K-anonymity approach as far as used for providing privacy to users sensitive data, but cloud can be greatly increases in a big data manner. In the existing, top-town specialization approach to make the privacy of users sensitive data. 'When the scalability of users data increase means top-town specialization technique is difficult to preserve the sensitive data and provide security to users data. Here we propose the specialization approach through generalization to preserve the sensitive data and provide the security against scalability in an efficient way with the help of map-reduce. Our approach is founding better solution than existing approach in a scalable and efficient way to provide security to users data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.