Biometric identification has advanced vastly since many decades ago. It became a blooming area for research as biometric technology has been used extensively in areas like robotics, surveillance, security and others. Face technology is more preferable due to its reliability and accuracy. By and large, face detection is the first processing stage that is performed before extending to face identification or tracking. The main challenge in face detection is the sensitiveness of the detection to pose, illumination, background and orientation. Thus, it is crucial to design a face detection system that can accommodate those problems. In this paper, a face detection algorithm is developed and designed in LabVIEW that is flexible to adapt changes in background and different face angle. Skin color detection method blending with edge and circle detection is used to improve the accuracy of face detected. The overall system designed in LabVIEW was tested in real time and it achieves accuracy about 97%.
Abstract-Inspection task is traditionally carried out by human. However, Automated Visual Inspection (AVI) has gradually become more popular than human inspection due to the advantageous in the aspect of high precision and short processing time. Therefore, this paper proposed a system which identifies the object's position for industrial robot based on colors and shapes where, red, green, blue and circle, square, triangle are recognizable. The proposed system is capable to identify the object's position in three modes, either based on color, shape or both color and shape of the desired objects. During the image processing, RGB color space is utilized by the proposed system while winner take all approach is used to classify the color of the object through the evaluation of the pixel's intensity value of the R, G and B channel. Meanwhile, the shapes and position of the objects are determined based on the compactness and the centroid of the region respectively. Camera settings, such as brightness, contrast and exposure is another important factor which can affect the performance of the proposed system. Lastly, a Graphical User Interface was developed. The experimental result shows that the developed system is highly efficient when implemented in the selected database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.