New closure theorems for shock models in reliability theory are presented. If the number of shocks to failure and the times between the arrivals of shocks have probability distributions of phase type, then so has the time to failure. PH‐distributions are highly versatile and may be used to model many qualitative features of practical interest. They are also well‐suited for algorithmic implementation. The computational aspects of our results are discussed in some detail.
We investigate a generalized variability ordering and its weaker versions among non-negative random variables (lifetimes of components). Our results include a necessary and sufficient condition which justifies the generalized variability interpretation of this dominance relation between life distributions, relationships to some weakly aging classes in reliability theory, closure properties and inequalities for the mean life of series and parallel systems under such ordering.
We show that the HNBUE family of life distributions is closed under weak convergence and that weak convergence within this family is equivalent to convergence of each moment sequence of positive order to the corresponding moment of the limiting distribution. A necessary and sufficient condition for weak convergence to the exponential distribution is given, based on a new characterization of exponentials within the HNBUE family of life distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.