Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (NR5A2) regulates bile acid biosynthesis1,2. Structural studies have identified phospholipids as potential LRH-1 ligands3–5, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine, DLPC) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signaling pathway that regulates bile acid metabolism and glucose homeostasis.
The nuclear receptor Liver Receptor Homolog-1, LRH-1, plays an important role in controlling lipid and cholesterol homeostasis and is a potential target for treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids (PLs) but the role of PLs in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and the protein in complex with the antidiabetic dilauroylphosphatidylcholine (DLPC). Our studies show that DLPC binding is a novel dynamic process that alters coregulator selectivity and that the lipid-free receptor interacts with widely expressed corepressors. These observations greatly enhance our understating of LRH-1 regulation and highlight its importance as a novel therapeutic target for controlling diabetes.
The Sec14-like phosphatidylinositol transfer protein Sfh3 associates with bulk LDs in vegetative cells but targets to a neutral lipid hydrolase-rich LD pool during sporulation. Sfh3 inhibits LD utilization by a PtdIns-4-phosphate–dependent mechanism, and this inhibition prevents prospore membrane biogenesis in sporulating cells.
The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the importance of hydrophobicity as the dominating characteristic in the stability of thermophilic proteins, and we anticipate this will be useful in our attempts to engineering thermostable proteins.
Background: NR5A nuclear receptors are important pharmaceutical targets with poorly understood ligand regulation. Sequence divergence has potentially altered their ligand response in model organisms. Results: Sequence divergence has differentially impacted ligand binding and protein dynamics in NR5A orthologs. Conclusion: Mouse LRH-1 is a phospholipid-responsive receptor, whereas Drosophila NR5A2 is not. Significance: Mice are viable therapeutic models for LRH-1-dependent diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.