The world of computation has shown wide variety of wonders in the past decade with Internet of Things (IoT) being one of the most promising technology. Emergence of IoT brings a lot of good to the technology pool with its capability to provide intelligent services to the users. With ease to use, IoT is backed by a strong Cloud based infrastructure which allows the sensory IoT devices to perform specific functions. Important features of cloud are its reliability and security where the latter must be dealt with proper care. Cloud centric systems are susceptible to Denial of Service (DoS) attacks wherein the cloud server is subjected to an overwhelming number of incoming requests by a malicious device. If the same attack is carried out by a network of devices such as IoT devices then it becomes a Distributed DoS (DDoS) attack. A DDoS attack may render the server useless for a long period of time causing the services to crash due to extensive load. This paper proposes a lightweight, efficient and robust method for DDoS attack by detecting the compromised node connected to the Fog node or edge devices before it reaches the cloud by taking advantage of the Fog layer and prevent it from harming any information recorded or from increasing the unnecessary traffic in a network. The chosen technology stack consists of languages and frameworks which allow proposed approach to works in real time complexity for faster execution and is flexible enough to work on low level systems such as the Fog nodes. The proposed approach uses mathematical models for forecasting data points and therefore does not rely on a computationally heavy approach such as neural networks for predicting the expected values. This approach can be easily modelled into the firmware of the system and can help make cloud services more reliable by cutting off rogue nodes that try to attack the cloud at any given point of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.