Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, and biocompatible polymer and has been used extensively in various fields. Indeed, important features of PVA such as its film-forming ability, high tensile strength and flexibility, high viscosity, solvent tolerance ability, thermostable nature have made it vital and drawn the attention of scientific community. However, being a watersoluble polymer, some chemical modifications are required to alter this property of PVA. Cross-linking is the most attractive and widely used method to change the properties of PVA to make it more valuable material. Different carboxylic acids have already been used for PVA cross-linking in various applications such as pervaporation, reverse osmosis (RO), wound dressing, drug delivery, and fuel cells. However, a comprehensive study on structure-property correlation of carboxylic acids as PVA cross-linker is not available. In this review, different available studies on carboxylic acid cross-linked PVA are summarized and are used to develop structure-property correlations of carboxylic acids as cross-linker on the properties of cross-linked PVA. Advantages and limitations of different carboxylic acids as PVA cross-linker are also summarized for various fields such as tissue engineering, wound dressing, drug delivery, fuel cell/ solid polymer electrolyte, pervaporation, desalination and RO solid polymer electrolytes, and food packaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.