Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated ratelimited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranylcarbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetatebicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers. * Concentration/enrichment within the injection tank. ** Tank #2 injection was initially started on 9-Sept-10; however, a closed injection valve prevented flow from the tank; injection was restarted on 13-Sept-10, as indicated.
This research paper aims to determine the genetic origin of the chemical elements in groundwater. It deals with the results of physicochemical parameters, to evaluate the hydro-geochemistry of groundwater in rural-urban fringe of district Bareilly, India. Pre- and post-monsoon sampling has been carried out, which reveals inter-seasonal variability effect on the hydro-geochemical processes. Geochemical modeling especially computation of saturation index was undertaken using the WATEQ4F model. Majority of samples fall in the category of undersaturation, which further suggests that groundwater still has potential to dissolve more minerals. Chemical categorizations of groundwater samples were performed with the help of the Aquachem model. Grouping of groundwater on the Piper diagram reveals a common composition and origin. In most of the area, water facies is of Ca(2+)-HCO(3)(-) type in both the seasons. It also indicates that in pre-monsoon, ion exchange is the dominant process, whereas in post-monsoon, both ion exchanges as well as reverse ion exchanges are reported in the groundwater of the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.