Epigenetic silencing of gluthathione-S-transferase pi (GSTP1) is recognized as being a molecular hallmark of human prostate cancer. We investigated the effects of green tea polyphenols (GTPs) on GSTP1 re-expression and further elucidated its mechanism of action and long-term safety, compared with nucleoside-analog inhibitor of DNA methyltransferase (DNMT), 5-aza-2 0 -deoxycitidine. Exposure of human prostate cancer LNCaP cells to 1-10 lg/ml of GTP for 1-7 days caused a concentration-and time-dependent re-expression of GSTP1, which correlated with DNMT1 inhibition. Methyl-specific-PCR and sequencing revealed extensive demethylation in the proximal GSTP1 promoter and regions distal to the transcription factor binding sites. GTP exposure in a time-dependent fashion diminished the mRNA and protein levels of MBD1, MBD4 and MeCP2; HDAC 1-3 and increased the levels of acetylated histone H3 (LysH9/18) and H4. Chromatin immunoprecipitation assays demonstrated that cells treated with GTP have reduced MBD2 association with accessible Sp1 binding sites leading to increased binding and transcriptional activation of the GSTP1 gene. Exposure of cells to GTP did not result in global hypomethylation, as demonstrated by methyl-specific PCR for LINE-1 promoter; rather GTP promotes maintenance of genomic integrity. Furthermore, exposure of cells to GTP did not cause activation of the prometaststic gene S100P, a reverse response noted after exposure of cells to 5-aza-2 0 deoxycitidine. Our results, for the first time, demonstrate that GTP has dual potential to alter DNA methylation and chromatin modeling, the 2 global epigenetic mechanisms of gene regulation and their lack of toxicity makes them excellent candidates for the chemoprevention of prostate cancer.Aberrant hypermethylation of CpG islands in the glutathione-S-transferase pi (GSTP1) gene promoter is increasingly being recognized as a precursor to the genesis of prostate cancer. 1,2 GSTP1 is a member of the glutathione S-transferase superfamily that catalyzes conjugation of the glutathione peptide with electrophilic compounds, including carcinogens, resulting in less toxic and more readily excretable metabolites. 3,4 A genetic variant of GSTP1 has been associated with cancer susceptibility 5 and mice lacking GSTP1 exhibit increased skin tumorigenesis, 6 findings that corroborate the notion that GSTP1 is a tumor suppressor. In contrast, overexpression of GSTP1 has been associated with the development of some types of cancer and has been noted to be associated with the acquisition of drug resistance in some neoplasms. 7,8 The 5 0 -untranslated region of GSTP1 contains GC-rich regions including CpG islands occupied by 2 putative Sp1 binding sites that play a central role in regulating basal levels of GSTP1 transcription. 9 Detailed bisulfite sequencing analysis of the CpG islands spanning the core promoter region of the GSTP1 gene has demonstrated that methylation is extensive at essentially all CpG sites in androgen-responsive human prostate cancer LNCaP and MDA PCa 2b cells. ...
Aims Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. Main Methods We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Key Findings Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. Significance These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer.
Apigenin (4′,5,7,-trihydroxyflavone), an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms that have not been fully elucidated. Our studies indicate that apigenin-mediated growth inhibitory responses are due to inhibition of class I histone deacetylases (HDACs) in prostate cancer cells. Treatment of PC-3 and 22Rv1 cells with apigenin (20–40μM) resulted in the inhibition of HDAC enzyme activity, specifically HDAC1 and HDAC3 at the protein and message level. Apigenin-mediated HDAC inhibition resulted in global histone H3 and H4 acetylation, as well as localized hyperacetylation of histone H3 on the p21/waf1 promoter. A corresponding increase was observed in p21/waf1 and bax protein and mRNA expression after apigenin exposure, consistent with the use of HDAC inhibitor, trichostatin A. The downstream events demonstrated cell cycle arrest and induction of apoptosis in both cancer cells. Studies of PC-3 xenografts in athymic nude mice further demonstrated that oral intake of apigenin at doses of 20 and 50μg/mouse/day over an 8-week period resulted in a marked reduction in tumor growth, HDAC activity, and HDAC1 and HDAC3 protein expression at both doses of apigenin. An increase in p21/waf1 expression was observed in apigenin-fed mice, compared to the control group. Furthermore, apigenin intake caused a significant decrease in bcl2 expression with concomitant increase in bax, shifting the bax/bcl2 ratio in favor of apoptosis. Our findings confirm for the first time that apigenin inhibits class I HDACs, particularly HDAC1 and HDAC3 and its exposure results in reversal of aberrant epigenetic events that promote malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.