Background The efficacy of interleukin-6 receptor blockade in hospitalized patients with coronavirus disease 2019 (Covid-19) who are not receiving mechanical ventilation is unclear. Methods We performed a randomized, double-blind, placebo-controlled trial involving patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, hyperinflammatory states, and at least two of the following signs: fever (body temperature >38°C), pulmonary infiltrates, or the need for supplemental oxygen in order to maintain an oxygen saturation greater than 92%. Patients were randomly assigned in a 2:1 ratio to receive standard care plus a single dose of either tocilizumab (8 mg per kilogram of body weight) or placebo. The primary outcome was intubation or death, assessed in a time-to-event analysis. The secondary efficacy outcomes were clinical worsening and discontinuation of supplemental oxygen among patients who had been receiving it at baseline, both assessed in time-to-event analyses. Results We enrolled 243 patients; 141 (58%) were men, and 102 (42%) were women. The median age was 59.8 years (range, 21.7 to 85.4), and 45% of the patients were Hispanic or Latino. The hazard ratio for intubation or death in the tocilizumab group as compared with the placebo group was 0.83 (95% confidence interval [CI], 0.38 to 1.81; P=0.64), and the hazard ratio for disease worsening was 1.11 (95% CI, 0.59 to 2.10; P=0.73). At 14 days, 18.0% of the patients in the tocilizumab group and 14.9% of the patients in the placebo group had had worsening of disease. The median time to discontinuation of supplemental oxygen was 5.0 days (95% CI, 3.8 to 7.6) in the tocilizumab group and 4.9 days (95% CI, 3.8 to 7.8) in the placebo group (P=0.69). At 14 days, 24.6% of the patients in the tocilizumab group and 21.2% of the patients in the placebo group were still receiving supplemental oxygen. Patients who received tocilizumab had fewer serious infections than patients who received placebo. Conclusions Tocilizumab was not effective for preventing intubation or death in moderately ill hospitalized patients with Covid-19. Some benefit or harm cannot be ruled out, however, because the confidence intervals for efficacy comparisons were wide. (Funded by Genentech; ClinicalTrials.gov number, NCT04356937 .)
The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group IMPORTANCE Clinical trials assessing the efficacy of IL-6 antagonists in patients hospitalized for COVID-19 have variously reported benefit, no effect, and harm.OBJECTIVE To estimate the association between administration of IL-6 antagonists compared with usual care or placebo and 28-day all-cause mortality and other outcomes.DATA SOURCES Trials were identified through systematic searches of electronic databases between October 2020 and January 2021. Searches were not restricted by trial status or language. Additional trials were identified through contact with experts.STUDY SELECTION Eligible trials randomly assigned patients hospitalized for COVID-19 to a group in whom IL-6 antagonists were administered and to a group in whom neither IL-6 antagonists nor any other immunomodulators except corticosteroids were administered. Among 72 potentially eligible trials, 27 (37.5%) met study selection criteria. DATA EXTRACTION AND SYNTHESISIn this prospective meta-analysis, risk of bias was assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I 2 statistic. The primary analysis was an inverse variance-weighted fixed-effects meta-analysis of odds ratios (ORs) for 28-day all-cause mortality. MAIN OUTCOMES AND MEASURESThe primary outcome measure was all-cause mortality at 28 days after randomization. There were 9 secondary outcomes including progression to invasive mechanical ventilation or death and risk of secondary infection by 28 days.RESULTS A total of 10 930 patients (median age, 61 years [range of medians, 52-68 years]; 3560 [33%] were women) participating in 27 trials were included. By 28 days, there were 1407 deaths among 6449 patients randomized to IL-6 antagonists and 1158 deaths among 4481 patients randomized to usual care or placebo (summary OR, 0.86 [95% CI, 0.79-0.95]; P = .003 based on a fixed-effects meta-analysis). This corresponds to an absolute mortality risk of 22% for IL-6 antagonists compared with an assumed mortality risk of 25% for usual care or placebo. The corresponding summary ORs were 0.83 (95% CI, 0.74-0.92; P < .001) for tocilizumab and 1.08 (95% CI, 0.86-1.36; P = .52) for sarilumab. The summary ORs for the association with mortality compared with usual care or placebo in those receiving corticosteroids were 0.77 (95% CI, 0.68-0.87) for tocilizumab and 0.92 (95% CI, 0.61-1.38) for sarilumab. The ORs for the association with progression to invasive mechanical ventilation or death, compared with usual care or placebo, were 0.77 (95% CI, 0.70-0.85) for all IL-6 antagonists, 0.74 (95% CI, 0.66-0.82) for tocilizumab, and 1.00 (95% CI, 0.74-1.34) for sarilumab. Secondary infections by 28 days occurred in 21.9% of patients treated with IL-6 antagonists vs 17.6% of patients treated with usual care or placebo (OR accounting for trial sample sizes, 0.99; 95% CI, 0.85-1.16). CONCLUSIONS AND RELEVANCEIn this prospective meta-analysis of clinical trials of patients hosp...
Over the course of infection, human immunodeficiency virus type 1 (HIV-1) continuously adapts to evade the evolving host neutralizing antibody responses. Changes in the envelope variable loop sequences, particularly the extent of glycosylation, have been implicated in antibody escape. To document modifications that potentially influence antibody susceptibility, we compared envelope variable loops 1 and 2 (V1-V2) from multiple sequences isolated at the primary phase of infection to those isolated around 2 to 3 years into the chronic phase of infection in nine women with HIV-1 subtype A. HIV-1 sequences isolated during chronic infection had significantly longer V1-V2 loops, with a significantly higher number of potential N-linked glycosylation sites, than the sequences isolated early in infection. To assess the effects of these V1-V2 changes on antibody neutralization and infectivity, we created chimeric envelope sequences, which incorporated a subject's V1-V2 sequences into a common subtype A envelope backbone and then used them to generate pseudotyped viruses. Compared to the parent virus, the introduction of a subject's early-infection V1-V2 envelope variable loops rendered the chimeric envelope more sensitive to that subject's plasma samples but only to plasma samples collected >6 months after the sequences were isolated. Neutralization was not detected with the same plasma when the early-infection V1-V2 sequences were replaced with chronic-infection V1-V2 sequences, suggesting that changes in V1-V2 contribute to antibody escape. Pseudotyped viruses with V1-V2 segments from different times in infection, however, showed no significant difference in neutralization sensitivity to heterologous pooled plasma, suggesting that viruses with V1-V2 loops from early in infection were not inherently more neutralization sensitive. Pseudotyped viruses bearing chimeric envelopes with early-infection V1-V2 sequences showed a trend in infecting cells with low CD4 concentrations more efficiently, while engineered viruses with V1-V2 sequences isolated during chronic infection were moderately better at infecting cells with low CCR5 concentrations. These studies suggest that changes within the V1-V2 envelope domains over the course of an infection influence sensitivity to autologous neutralizing antibodies and may also impact host receptor/ coreceptor interactions.
Four different endemic coronaviruses (eCoVs) are etiologic agents for the seasonal "common cold," and these eCoVs share extensive sequence homology with human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we show that individuals with as compared to without a relatively recent documented eCoV were tested at greater frequency for respiratory infections but had similar rate of SARS-CoV-2 acquisition. Importantly, the patients with a previously detected eCoV had less severe coronavirus disease-2019 (COVID-19) illness. Our observations suggest that pre-existing immune responses against endemic human coronaviruses can mitigate disease manifestations from SARS-CoV-2 infection.
Designing an effective human immunodeficiency virus type 1 (HIV-1) vaccine will rely on understanding which variants, from among the myriad of circulating HIV-1 strains, are most commonly transmitted and determining whether such variants have an Achilles heel. Here we show that heterosexually acquired subtype A HIV-1 envelopes have signature sequences that include shorter V1-V2 loop sequences and fewer predicted N-linked glycosylation sites relative to the overall population of circulating variants. In contrast, recently transmitted subtype B variants did not, and this was true for cases where the major risk factor was homosexual contact, as well as for cases where it was heterosexual contact. This suggests that selection during HIV-1 transmission may vary depending on the infecting subtype. There was evidence from 23 subtype A-infected women for whom there was longitudinal data that those who were infected with viruses with fewer potential N-linked glycosylation sites in V1-V2 had lower viral set point levels. Thus, our study also suggests that the extent of glycosylation in the infecting virus could impact disease progression.Studies in the simian immunodeficiency virus (SIV)/macaque model of AIDS have shown that the viruses that evolve over the course of disease are selected in part because they increase the number and/or vary the position of the carbohydrates to shield them from the host antibody response (1, 15). Subsequent studies indicate that a similar evolutionary process may occur in the human immunodeficiency virus type 1 (HIV-1) envelope during both simian/human immunodeficiency virus infection in macaques (2) and HIV-1 infection in humans (17). A recent study of eight individuals infected with subtype C HIV-1 suggested that there may be counterselection at transmission against variants with long hypervariable loops and relatively large numbers of potential N-linked glycosylation sites, which are predicted to have a more recessed receptor-binding domain (4). The transmitted subtype C HIV-1s had signature sequence characteristics, which included shorter envelope variable loop domains and fewer potential N-linked glycosylation sites (PNGS) (4). Because the study was limited to a small number of cases, all of one subtype, it is unclear whether transmission of viruses with these characteristics is typical, a point that is of importance for designing globally effective vaccines and other interventions to block transmitted viruses.We examined HIV-1 sequences within a median of 70 days (interquartile range [IQR], 49 to 161) post negative serology (PNS) from 27 women and eight men from Kenya who acquired subtype A HIV-1 through heterosexual transmission (8, 9, 13; unpublished data). The days PNS was defined as the time from the last HIV-1-negative serological test to when the sample used to obtain sequences was taken. The sequences were compared to subtype A sequences in the Los Alamos database to determine if they differed in V1-V2 length or number of PNGS. The Los Alamos database includes sequences from su...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.