The East China Sea (ECS) seasonally receives a high organic input due to the terrestrial organic matter influx, which is controlled by the East Asian Summer Monsoon (EASM), and the increased productivity driven by upwelling of the subsurface Kuroshio Current (KC). Changes in benthic foraminiferal assemblage composition in combination with paleoceanographic proxy data (CaCO3 (%), TOC (%), δ13Cpf, and δ18Obf) are used to reconstruct bottom water oxygenation and organic export flux variability over the last 400 kyr in the ECS. Multivariate analyses of benthic foraminiferal census data identified six biofacies characteristic of varying environmental conditions. These results suggest that enhanced EASM precipitation and KC upwelling directly influenced organic export flux and bottom water oxygen content in the ECS. The ECS bottom water was suboxic during Marine Isotope Stage (MIS) 11 to 8; suboxic to dysoxic between MIS 7 and 6, strongly dysoxic between mid‐MIS 5 and 4, and exhibited high variability between MIS 3 and 1. Spectral analysis of relative abundances of representative genera Quinqueloculina (oxic), Bulimina (suboxic), and Globobulimina (dysoxic) reveals a robust 23 kyr signal, which we attribute to precessionally‐paced changes in surface productivity and bottom water oxygenation related to KC variability over the past 400 kyr.
The East China Sea (ECS) seasonally receives a high organic input due to the terrestrial organic matter influx, which is controlled by the East Asian Summer Monsoon (EASM), and the increased productivity driven by upwelling of the subsurface Kuroshio Current (KC). Changes in benthic foraminiferal assemblage composition in combination with paleoceanographic proxy data (CaCO3 (%), TOC (%), δ 13 Cpf, and δ 18 Obf) are used to reconstruct bottom water oxygenation and organic export flux variability over the last 400 kyr in the ECS. Multivariate analyses of benthic foraminiferal census data identified six biofacies characteristic of varying environmental conditions. These results suggest that enhanced EASM precipitation and KC upwelling directly influenced organic export flux and bottom water oxygen content in the ECS. The ECS bottom water was suboxic during Marine Isotope Stage (MIS) 11 to 8; suboxic to dysoxic between MIS 7 and 6, strongly dysoxic between mid-MIS 5 and 4, and exhibited high variability between MIS 3 and 1. Spectral analysis of relative abundances of representative genera Quinqueloculina (oxic), Bulimina (suboxic), and Globobulimina (dysoxic) reveals a robust 23 kyr signal, which we attribute to precessionally-paced changes in surface productivity and bottom water oxygenation related to KC variability over the past 400 kyr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.