The global spread of SARS‐CoV‐2 is fast moving and has caused a worldwide public health crisis. In the present article, we analyzed spike protein sequences of SARS‐CoV‐2 genomes to assess the impact of mutational diversity. We observed from amino acid usage patterns that spike proteins are associated with a diversity of mutational changes and most important underlying cause of variation of amino acid usage is the changes in hydrophobicity of spike proteins. The changing patterns of hydrophobicity of spike proteins over time and its influence on the receptor binding affinity provides crucial information on the SARS‐CoV‐2 interaction with human receptor. Our results also show that spike proteins have evolved to prefer more hydrophobic residues over time. The present study provides a comprehensive analysis of molecular sequence data to consider that mutational variants might play a crucial role in modulating the virulence and spread of the virus and has immediate implications for therapeutic strategies.
Background
Eradication of Helicobacter pylori provides the most effective treatment for gastroduodenal diseases caused by H. pylori infection. Clarithromycin, a member of the macrolide family, still remains the most important antibiotic used in H. pylori eradication treatment. But the increasing prevalence of clarithromycin resistant H. pylori strains due to point mutations in the V region of the 23S rRNA, poses a great threat in treating the ailing patients. So, we aimed for PCR-mediated rapid detection of the point mutation at 2143 position of 23S rRNA gene in H. pylori that is relevant to clarithromycin resistance from culture and simultaneously from biopsy specimens to avoid the empirical treatment.
Results
Newly developed PCR assay using DNA of pure culture detected point mutation in 23S rRNA gene in 21 (8.04%) of 261 clinical strains tested. The agar dilution method showed that all these 21 strains were resistant to clarithromycin indicating the perfect match of the PCR based results. Additionally, the sequencing study also identified the A to G mutation at 2143 position in 23S rRNA gene of the resistant strains only. Consequently, the newly developed Nested-ASP-PCR dealing directly with 50 biopsy specimens demonstrated 100% sensitivity and specificity with the findings of agar dilution method taken as Gold standard. Bioinformatics based analysis such as accessibility analysis and dot plot clearly stated that the base pairing probability has increased due to mutation. Computational studies revealed that the point mutation confers more stability in secondary structure due to conversion of loop to stem. Furthermore, interaction studies showed binding affinity of the CLR to the mutant type is weaker than that to the wild type.
Conclusion
This assay outlines a rapid, sensitive and simple approach to identify point mutation that confers clarithromycin resistance as well as clarithromycin sensitive strains, providing rapid initiation of effective antibiotic treatment. Additionally, it is simple to adopt for hospital based diagnostic laboratories to evaluate the degree of regional clarithromycin resistance from biopsy specimens itself. Furthermore, in silico studies provide evidence or a signal that the prevalence of clarithromycin resistance may rise in the near future as a result of this point mutation.
Genotyping of Vibrio cholerae strains, VC1 and VC2 was undertaken to characterize antimicrobial resistance genes (ARGs) against chloramphenicol, SXT, nalidixic acid and streptomycin against which they were found to be resistant by antibiogram analysis. strAB, sxt, sul2, qace∆1-sul1 were detected by PCR. Genome annotation and identification of ARGs with WGS helped to detect the presence of almG, varG, strA (APH(3'')-Ib), strB (APH(6)-Id), sul2, catB9, floR, CRP, dfrA1 genes. Signatures of resistance determinants and protein domains involved in antimicrobial resistance, primarily, efflux of antibiotics were identified on the basis of 30%-100% homology to reference proteins. These domains were predicted to be involved in other metabolic functions on the basis of 100% identity with 100% coverage with reference protein and nucleotide sequences and were predicted to be of a diverse taxonomic origin accentuating the influence of the microbiota on AMR acquisition. Sequence analysis of QRDR (quinolone resistance-determining region) revealed SNPs. Cytoscape v3.8.2 was employed to analyse protein-protein interaction of MDR proteins, MdtA and EmrD-2, with nodes of vital AMR pathways. Vital nodes involved in efflux of different classes of antibiotics were found to be absent in VC1 and VC2 justifying the sensitivity of these strains to most antibiotics. The study helped to examine the resistome of VC isolated from recent outbreaks to understand the underlying reason of sensitivity to most antibiotics and also to characterize the ARGs in their genome. It revealed that VC is a reservoir of signatures of resistance determinants and serving as precursors for severe AMR crisis in cholera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.