In this paper, digital parallelization and fractional delay-based novel methods are proposed for the realization of high bandwidth, high-resolution Ku-band radar target simulator with 2.5 GHz intermediate frequency. High bandwidth waveform from radar is sampled by high-speed Analog to Digital Converter, and samples are parallelized in Field Programmable Gate Array (FPGA) to work at the nominal clock frequency. In Digital RF Memory-based target simulator, for finer range resolution, the FPGA clock frequency needs to be increased, which leads to increased system design complexity. The finer range resolution is accomplished without altering the system clock frequency using variable fractional delay filters and the digital parallelization methodology is proposed in this paper. The maximum target range that can be simulated is 20 km. As a result, memory requirements, computational complexity, and power dissipation are reduced. Finally, simulation and implementation results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.