We report multi-color optical imaging and polarimetry observations of the afterglow of the first TeVdetected gamma-ray burst, GRB 190114C, using the RINGO3 polarimeter on the 2-m autonomous robotic Liverpool Telescope. Observations begin 201 s after the onset of the GRB and continue until ∼ 7000 s post-burst. High temporal resolution (∆t 2.3 − 4.6 s) and dense sampling of the RINGO3 light curves reveal a chromatic break at t ∼ 400 − 500 s -with initial temporal decay α ∼ 1.5 flattening to α ∼ 1 post-break -which we model as a combination of reverse and forward-shock components, with magnetization parameter R B ∼ 40. The observed polarization degree P ∼ 2 − 4% remains steady throughout the first ∼ 2000-s observation window, with a constant position angle. Broadband spectral energy distribution modeling of the afterglow confirms GRB 190114C is highly obscured (A v,HG = 1.49 ± 0.12 mag; N H,HG = (9.0 ± 0.03) × 10 22 cm −2 ). The measured polarization is therefore dominated by dust scattering and the intrinsic polarization is low -in contrast to P > 10% measured previously for other GRB reverse shocks. We test whether 1st and higher-order inverse Compton scattering in a magnetized reverse shock can explain the low optical polarization and the sub-TeV emission but conclude neither is explained in the reverse shock Inverse Compton model. Instead, the unexpectedly low intrinsic polarization degree in GRB 190114C can be explained if largescale jet magnetic fields are distorted on timescales prior to reverse shock emission.
The observational signatures of black holes in x-ray binary systems depend on their masses, spins, accretion rate, and the misalignment angle between the black hole spin and the orbital angular momentum. We present optical polarimetric observations of the black hole x-ray binary MAXI J1820+070, from which we constrain the position angle of the binary orbital. Combining this with previous determinations of the relativistic jet orientation, which traces the black hole spin, and the inclination of the orbit, we determine a lower limit of 40° on the spin-orbit misalignment angle. The misalignment must originate from either the binary evolution or black hole formation stages. If other x-ray binaries have similarly large misalignments, these would bias measurements of black hole masses and spins from x-ray observations.
Polarization plays an important role in various time-domain astrophysics to understand the magnetic fields, geometry, and environments of spatially unresolved variable sources. In this paper we present the results of laboratory and on-sky testing of a novel dual-beam, dual-camera optical imaging polarimeter (MOPTOP) exploiting high sensitivity, low-noise CMOS technology, and designed to monitor variable and transient sources with low systematic errors and high sensitivity. We present a data reduction algorithm that corrects for sensitivity variations between the cameras on a source-by-source basis. Using our data reduction algorithm, we show that our dual-beam, dual-camera technique delivers the benefits of low and stable instrumental polarization (<0.05 per cent for lab data and <0.25 per cent for on sky data) and high throughput while avoiding the additional sky brightness and image overlap problems associated with dual-beam, single-camera polarimeters.
We present the densely sampled early light curve of the Type II supernova (SN) 2023ixf, first observed within hours of explosion in the nearby Pinwheel Galaxy (Messier 101; 6.7 Mpc). Comparing these data to recently updated models of shock-cooling emission, we find that the progenitor likely had a radius of 410 ± 10 R ⊙. Our estimate is model dependent but consistent with a red supergiant. These models provide a good fit to the data starting about 1 day after the explosion, despite the fact that the classification spectrum shows signatures of circumstellar material around SN 2023ixf during that time. Photometry during the first day after the explosion, provided almost entirely by amateur astronomers, does not agree with the shock-cooling models or a simple power-law rise fit to data after 1 day. We consider the possible causes of this discrepancy, including precursor activity from the progenitor star, circumstellar interaction, and emission from the shock before or after it breaks out of the stellar surface. The very low luminosity (−11 mag > M > −14 mag) and short duration of the initial excess lead us to prefer a scenario related to prolonged emission from the SN shock traveling through the progenitor system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.