Many physiological and behavioral processes such as sleep and wakefulness, hormone secretion, and olfactory sensitivity exhibit a 24-h rhythmicity that persists in constant conditions with a period close to (circa) 24 h. These circadian rhythms are driven by a network of endogenous clocks residing in various tissues, including the olfactory system, and are synchronized to the outside world by environmental time cues such as light, temperature, and food. In addition to having these well-known zeitgebers of circadian clocks, most environments consist of a multitude of odors that report, for example, the availability of food or the presence of predators--and often, they do so in a time-of-day-dependent manner. Considering the evolutionary significance of odors for various fitness-related behaviors such as mate choice, predator avoidance, and foraging strategies, we asked whether odors--similar to light, temperature, or food--might act as a circadian time cue able to influence circadian locomotor behavior in mammals. Administering individual air flow, periodically saturated with an artificial odor mix, to running wheel-equipped mouse cages, we found that rhythmic odor administrations significantly lengthened the period of circadian activity rhythms. Additionally, odor cues led to partial reemergence of circadian locomotor rhythmicity in suprachiasmatic nuclei (SCN)-lesioned mice, suggesting that the SCN as the central circadian pacemaker are not immediately required for odor-mediated effects on circadian behavior. However, odor-based modulation of circadian behavior did not occur in clock mutant (cry1(-/-) /cry2(-/-)) mice, indicating an odor-mediated mechanism that involves extra-SCN canonical clocks, such as the olfactory clock itself. Our results indicate not only that odor stimuli can act as a circadian time cue modulating circadian behavior but also that odor effects are even more pronounced in the absence of the SCN but nevertheless require the presence of a functional canonical clock.
Odor discrimination behavior displays circadian fluctuations in mice, indicating that mammalian olfactory function is under control of the circadian system. This is further supported by the facts that odor discrimination rhythms depend on the presence of clock genes and that olfactory tissues contain autonomous circadian clocks. However, the molecular link between circadian function and olfactory processing is still unknown. To elucidate the molecular mechanisms underlying this link, we focused on the olfactory epithelium (OE), the primary target of odors and the site of the initial events in olfactory processing. We asked whether olfactory sensory neurons (OSNs) within the OE possess an autonomous circadian clock and whether olfactory pathways are under circadian control. Employing clock gene-driven bioluminescence reporter assays and time-dependent immunohistochemistry on OE samples, we found robust circadian rhythms of core clock genes and their proteins in OSNs, suggesting that the OE indeed contains an autonomous circadian clock. Furthermore, we performed a circadian transcriptome analysis and identified several OSN-specific components that are under circadian control, including those with putative roles in circadian olfactory processing, such as KIRREL2-an established factor involved in short-term OSN activation. The spatiotemporal expression patterns of our candidate proteins suggest that they are involved in short-term anabolic processes to rhythmically prepare the cell for peak performances and to promote circadian function of OSNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.