Ligand-induced down-regulation controls the signaling potency of the epidermal growth factor receptor (EGFR/ErbB1). Overexpression studies have identifiedCbl-mediated ubiquitinylation of EGFR as a mechanism of ligand-induced EGFR down-regulation. However, the role of endogenous Cbl in EGFR down-regulation and the precise step in the endocytic pathway regulated by Cbl remain unclear. Using Cbl ؊/؊ mouse embryonic fibroblast cell lines, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and efficient degradation of EGFR. Further analyses using Chinese hamster ovary cells with a temperature-sensitive defect in ubiquitinylation confirm a crucial role of the ubiquitin machinery in Cbl-mediated EGFR degradation. However, internalization into early endosomes did not require Cbl function or an intact ubiquitin pathway. Confocal immunolocalization studies indicated that Cbl-dependent ubiquitinylation plays a critical role at the early endosome to late endosome/lysosome sorting step of EGFR down-regulation. These findings establish Cbl as the major endogenous ubiquitin ligase responsible for EGFR degradation, and show that the critical role of Cbl-mediated ubiquitinylation is at the level of endosomal sorting, rather than at the level of internalization. Growth factor receptor tyrosine kinases (RTKs)1 play crucial roles in cellular proliferation, survival, migration, and differentiation. Epidermal growth factor receptor (EGFR/ErbB1) is a member of the ErbB family (ErbB1-4) of RTKs, which play crucial homeostatic roles and are implicated in oncogenesis. Ligand-induced activation of RTKs leads to the assembly of signaling protein complexes and subsequent activation of downstream signaling pathways. The ligand-activated RTKs also undergo rapid endocytosis (1). The endocytosed receptors then undergo a sorting process, which determines receptor fate and signal intensity. The receptors can be targeted to the lysosome for degradation, which terminates receptor signals. Alternatively, the internalized receptors can be recycled back to the cell surface for continued ligand binding and signaling (2-5). The relative efficiency of lysosomal sorting versus recycling is a key determinant of the signaling potency of RTKs (6). For example, EGFR is predominantly delivered to lysosomes when activated by EGF. In contrast, heregulin-activated ErbB2 is primarily recycled. The greater efficiency of the recycling process is thought to be a major determinant of the signaling superiority of ErbB2 over EGFR (7-9).Despite a critical role of endocytic sorting as a determinant of ErbB receptor down-regulation, the biochemical mechanisms that regulate this process have only recently begun to be elucidated. We, and others, have identified Cbl as one such regulator (10 -12). Cbl is recruited to the activated EGFR through both direct and indirect binding. Direct Cbl-EGFR interaction is mediated through the N-terminal tyrosine kinase-binding domain of Cbl, which binds to phosphorylated Tyr-1045 on EGFR (13). Indirect Cbl-E...
Hepatocellular carcinoma (HCC) is a complex biological process and is often diagnosed at advanced stages with no effective treatment options. With advances in tumor biology and molecular genetic profiling, several different signaling pathways and molecular mechanisms have been identified as responsible for initiating and promoting HCC. Targeting these critical pathways, which include the receptor tyrosine kinase pathways, the Ras mitogen-activated protein kinase (Ras/Raf/MAPK), the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), the Wnt/β-catenin signaling pathway, the ubiquitin/proteasome degradation and the hedgehog signaling pathway has led to the identification of novel therapeutics for HCC treatment. In this review, we elaborated on our current understanding of the signaling pathways involved in the development and initiation of HCC and anticipate the potential targets for therapeutic drug development.
Sprouty proteins are recently identified receptor tyrosine kinase (RTK) inhibitors potentially involved in many developmental processes. Here, we report that Sprouty proteins become tyrosine phosphorylated after growth factor treatment. We identified Tyr55 as a key residue for Sprouty2 phosphorylation and showed that phosphorylation was required for Sprouty2 to inhibit RTK signaling, because a mutant Sprouty2 lacking Tyr55 augmented signaling. We found that tyrosine phosphorylation of Sprouty2 affected neither its subcellular localization nor its interaction with Grb2, FRS2/SNT, or other Sprouty proteins. In contrast, Sprouty2 tyrosine phosphorylation was necessary for its binding to the Src homology 2-like domain of c-Cbl after fibroblast growth factor (FGF) stimulation. To determine whether c-Cbl was required for Sprouty2-dependent cellular events, Sprouty2 was introduced into c-Cbl-wild-type and -null fibroblasts. Sprouty2 efficiently inhibited FGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 in c-Cbl-null fibroblasts, thus indicating that the FGF-dependent binding of c-Cbl to Sprouty2 was dispensable for its inhibitory activity. However, c-Cbl mediates polyubiquitylation/proteasomal degradation of Sprouty2 in response to FGF. Last, using Src-family pharmacological inhibitors and dominant-negative Src, we showed that a Src-like kinase was required for tyrosine phosphorylation of Sprouty2 by growth factors. Thus, these data highlight a novel negative and positive regulatory loop that allows for the controlled, homeostatic inhibition of RTK signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.