We have proposed an energy-dependent parametrization scheme for determining the diffuseness parameter of Woods–Saxon potential which when used in conjunction with the coupled channel code CCFULL explains very well the fusion excitation function data around the barrier for various systems.
A two-dimensional (2D) analytical model for the threshold voltage of fully depleted short-channel triple-material double-gate (DG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is presented in this paper. The 2D Poisson’s equation has been solved with suitable boundary conditions by applying the parabolic potential approximation. The lightly doped channel has been taken to enhance the device performance in terms of higher carrier mobility and minimum dopant fluctuation. The improved hot carrier effects over the double-material DG MOSFETs have been demonstrated. Different length ratios of three channel regions related to different gate materials have been optimized to minimize short-channel effects. The effects of device parameters on the threshold voltage have also been discussed. The model results have been compared with the simulation data obtained by using the commercially available device simulation software ATLAS™.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.