In this work we study tilings of regions in the square lattice with L-shaped trominoes. Deciding the existence of a tiling with L-trominoes for an arbitrary region in general is NP-complete, nonetheless, we identify restrictions to the problem where it either remains NP-complete or has a polynomial time algorithm. First, we characterize the possibility of when an Aztec rectangle has an L-tromino tiling, and hence also an Aztec diamond; if an Aztec rectangle has an unknown number of defects or holes, however, the problem of deciding a tiling is NP-complete. Then, we study tilings of arbitrary regions where only 180 • rotations of L-trominoes are available. For this particular case we show that deciding the existence of a tiling remains NP-complete; yet, if a region contains certain socalled "forbidden polyominoes" as subregions, then there exists a polynomial time algorithm for deciding a tiling.
We prove refined enumeration results on several symmetry classes as well as related classes of alternating sign matrices with respect to classical boundary statistics, using the six-vertex model of statistical physics. More precisely, we study vertically symmetric, vertically and horizontally symmetric, vertically and horizontally perverse, off-diagonally and off-antidiagonally symmetric, vertically and off-diagonally symmetric, quarter turn symmetric as well as quasi quarter turn symmetric alternating sign matrices. Our results prove conjectures of Fischer, Duchon and Robbins.
Helfgott and Gessel gave the number of domino tilings of an Aztec Rectangle with defects of size one on the boundary of one side. In this paper we extend this to the case of domino tilings of an Aztec Rectangle with defects on all boundary sides.
We prove refined enumeration results on several symmetry classes as well as related classes of alternating sign matrices with respect to classical boundary statistics, using the six-vertex model of statistical physics. More precisely, we study vertically symmetric, vertically and horizontally symmetric, vertically and horizontally perverse, off-diagonally and off-antidiagonally symmetric, vertically and off-diagonally symmetric, quarter turn symmetric as well as quasi quarter turn symmetric alternating sign matrices. Our results prove conjectures of Fischer, Duchon and Robbins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.