A nonlinear analysis for the finite amplitude electron acoustic wave (EAW) is considered in a collisional plasma. The fluid model is used to describe the two-temperature electron species in a fixed ion background. In general, in electron-ion plasma, the presence of wave nonlinearity, dispersion, and dissipation (arising from fluid viscosity) give rise to the Korteweg-de Vries Burgers (KdVB) equation which exhibits shock wave. In this work, it is shown that the dissipation due to the collision between electron and ion in the presence of collective phenomena (plasma current) can also introduce an anomalous dissipation that causes the Burgers term and thus leads to the generation of electron acoustic shock wave. Both analytical and numerical analysis show the formation of transient shock wave. Relevance of the results are discussed in the context of space plasma.
The nonlinear electron acoustic wave, which is found in the earth’s magnetosphere by satellite observations, is studied analytically by Lagrangian fluid description. The basic linear mode is observed in a two temperature electron species plasma where ions form stationary charge neutral background. We have obtained nonlinear description of this mode, which depends on both time and space. A possible solution shows a soliton like structure, which is localized in space, and the amplitude increases with time in the absence of dispersion. Small dispersive correction, however, shows spread of the solution in space. This method can be generalized to study the nonlinear behavior of a general class of multispecies plasma.
An analysis of the interaction between modes involving two species with different pressures in the presence of a static-neutralizing ion background is presented using a quantum hydrodynamic model. It is shown that quantum electron plasma waves can nonlinearly interact with quantum electron acoustic waves in a time scale much longer than electron plasma oscillation response time. A set of coupled nonlinear differential equations is obtained that is similar to the Zakharov equations but includes quantum correction terms. These equations are solved in a moving frame, showing that solitary-wave-like solutions may also be possible in quantum Zakharov equations. It is also shown that quantum effects can reduce the growth rate of the usual caviton instability. Possible applications of the theory are also outlined.
Nonlinear electron acoustic cyclotron waves (EACW) are studied in a quasineutral plasma in presence of uniform magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary charge neutral inhomogeneous background. In long wavelength limit, it is shown that the linear electron acoustic wave is modified by the uniform magnetic field similar to that of electrostatic ion cyclotron wave. Nonlinear equations for these waves are solved by using Lagrangian variables. Results show that the spatial solitary wave-like structures are formed due to nonlinearities and dispersions. These structures transiently grow to larger amplitude unless dispersive effect is actively operative and able to arrest this growth. We have found that the wave dispersion originated from the equilibrium inhomogeneity through collective effect and is responsible for spatiotemporal structures. Weak dispersion is not able to stop the wave collapse and singular structures of EACW are formed. Relevance of the results in the context of laboratory and space plasmas is discussed. V C 2013 American Institute of Physics.
Nonlinear interaction between Langmuir waves and Electron Acoustic Wave (EAW) is being studied in a warm magnetized plasma in presence of two intermingled fluids, hot electrons, and cold electrons while ions forming static background. Two-fluid, two-timescale theory is performed to derive modified Zakharov's equations in a magnetized plasma. These coupled equations describe low-frequency response of electron density due to high-frequency electric field along with magnetic field perturbations. Linear analysis shows coupling between acoustic mode, upper hybrid mode, and cyclotron modes. These modes are found to be modified due to the presence of two electron components. These equations are significant in the context of weak and strong turbulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.