Dynamic metrics capture the run time features of object-oriented languages, i.e., runtime polymorphism, dynamic binding, etc., that are not covered by static metrics. Therefore, in this paper, we derived a new approach to measuring the software reusability of a design pattern based on dynamic metrics. To achieve this, the authors proposed a model based on five parameters, i.e., polymorphism, inheritance, number of children, coupling, and complexity, to measure the reusability factor by using various soft computing techniques, i.e., Fuzzy, Neural Network, and Neuro-Fuzzy. Further, we also compared the proposed model with four existing machine learning algorithms. Lastly, we found that the proposed model using the neuro-fuzzy technique is trained well and predicts well with MAE (Mean absolute error) 0.003 and RMSE (Root mean square error) 0.009 based on dynamic metrics. Hence, it is concluded that dynamic metrics are a better predictor of the reusability factor than static metrics.
Effective software maintenance is a crucial factor to measure that can be achieved with the help of software metrics. In this paper, authors derived a new approach for measuring the maintainability of software based on hybrid metrics that takes advantages of both i.e. static metrics and dynamic metrics in an object-oriented environment whereas, dynamic metrics capture the run time features of object-oriented languages i.e. run time polymorphism, dynamic binding etc. which is not covered by static metrics. To achieve this, the authors proposed a model based on static and hybrid metrics to measure maintainability factor by using soft computing techniques and it is found that the proposed neuro-fuzzy model was trained well and predict adequate results with MAE 0.003 and RMSE 0.009 based on hybrid metrics. Additionally, the proposed model was validated on two test datasets and it is concluded that the proposed model performed well, based on hybrid metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.