BackgroundAmong the neglected tropical diseases, leishmaniasis continues to be prevalent in many tropical and subtropical countries despite international, national, and local efforts towards its control and elimination over the last decade. This warrants a critical evaluation of such factors as under-reporting, asymptomatic infections, post kala azar dermal leishmaniasis (PKDL) cases, and drug resistance. In this review, we highlight lesser-understood atypical presentations of the disease involving atypical parasite strains against a background of classical leishmaniasis with a focus on the Indian subcontinent.Methods and findingsA literature review based on endemic areas, the nature of disease manifestation, and underlying causative parasite was performed with data collected from WHO reports for each country. Searches on PubMed included the term ‘‘leishmaniasis” and “leishmaniasis epidemiology” alone and in combination with each of the endemic countries, Leishmania species, cutaneous, visceral, endemic, non-endemic, typical, classical, atypical, and unusual with no date limit and published in English up to September 2017. Our findings portray a scenario with a wider distribution of the disease in new endemic foci, with new discoveries of parasite-driven atypical disease manifestations in different regions of the world. Unlike the classical picture, some Leishmania species are associated with more than one disease presentation, e.g., the L. donovani complex, generally associated with the visceral form, is now also associated with a cutaneous disease presentation, while L. tropica species complex, known to cause cutaneous disease, can cause viscerotropic disease. This phenomenon points towards the discovery of novel parasite variants as etiologic agents of atypical disease manifestations and represents an excellent opportunity to identify and study genes that control disease virulence and tropism.ConclusionsThe increased recognition of atypical leishmaniasis as an outcome of parasite variants has major implications for leishmaniasis control and elimination. Identifying molecular correlates of parasite isolates from distinct regions associated with different disease phenotypes is required to understand the current epidemiology of leishmaniasis in regions with atypical disease.
Chemoresistance is one of the major hurdles in the treatment of breast cancer, which limits the effect of both targeted and conventional therapies in clinical settings. Therefore, understanding the mechanisms underpinning resistance is paramount for developing strategies to circumvent resistance in breast cancer patients. Several published reports have indicated that lncRNAs play a dynamic role in the regulation of both intrinsic and acquired chemoresistance through a variety of mechanisms that endow cells with a drug-resistant phenotype. Although a number of lncRNAs have been implicated in chemoresistance of breast cancer, their mechanistic roles have not been systematically reviewed. Thus, here we present a detailed review on the latest research findings and discoveries on the mechanisms of acquisition of chemoresistance in breast cancer related to lncRNAs, and how lncRNAs take part in various cancer signalling pathways involved in breast cancer cells. Knowledge obtained from this review could assist in the development of new strategies to avoid or reverse drug resistance in breast cancer chemotherapy.
The heterologous prime-boost vaccination strategy may be utilized for visceral leishmaniasis.
Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis.
Sphingolipid metabolites are emerging as important signaling molecules in allergic diseases specifically asthma. One of the sphingolipid metabolite, sphingosine-1-phosphate (S1P), is involved in cell differentiation, proliferation, survival, migration, and angiogenesis. In the allergic diseases, alteration of S1P levels influences the differentiation and responsiveness of mast cells (MCs). S1P is synthesized by two sphingosine kinases (SphKs), sphingosine kinase 1, and sphingosine kinase 2. Engagement of IgE to the FcεRI receptor induces the activation of both the SphKs and generates S1P. Furthermore, SphKs are also essential to FcεRI-mediated MC activation. Activated MCs export S1P into the extracellular space and causes inflammatory response and tissue remodeling. S1P signaling has dual role in allergic responses. Activation of SphKs and secretion of S1P are required for MC activation; however, S1P signaling plays a vital role in the recovery from anaphylaxis. Several non-coding RNAs have been shown to play a crucial role in controlling the MC-associated inflammatory and allergic responses. Thus, S1P signaling pathway and its regulation by non-coding RNA could be explored as an exciting potential therapeutic target for asthma and other MC-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.