A single novel enzyme, glyoxalase III, which catalyses the conversion of methylglyoxal into D-lactate without involvement of GSH, has been detected in and purified from Escherichia coli. Of several carbonyl compounds tested, only the alpha-ketoaldehydes methylglyoxal and phenylglyoxal were found to be substrates for this enzyme. Glyoxalase III is active over a wide range of pH with no sharp pH optimum. In its native form it has an M(r) of 82000 +/- 2000, and it is composed of two subunits of equal M(r). Glutathione analogues, which are inhibitors of glyoxalase I, do not inhibit glyoxalase III. Glyoxalase III is found to be sensitive to thiol-blocking reagents. The p-hydroxymercuribenzoate-inactivated enzyme could be almost completely re-activated by dithiothreitol and other thiol-group-containing compounds, indicating the possible involvement of thiol group(s) at or near the active site of the enzyme.
Results have implications for improved leishmanicidal action of Qr in combination with SA targeting RR and suggest future drug design based on interference with the parasite's iron metabolism under in vivo conditions.
The effect of methylglyoxal on the oxygen consumption of mitochondria of both normal and leukaemic leucocytes was tested by using different respiratory substrates and complex specific artificial electron donors and inhibitors. The results indicate that methylglyoxal strongly inhibits mitochondrial respiration in leukaemic leucocytes, whereas, at a much higher concentration, methylglyoxal fails to inhibit mitochondrial respiration in normal leucocytes. Methylglyoxal strongly inhibits ADP-stimulated α-oxoglutarate and malate plus NAD + -dependent respiration, whereas, at a higher concentration, methylglyoxal fails to inhibit succinate and α-glycerophosphate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinone and cannot inhibit oxygen consumption when the N,N,Nh,Nh-tetramethyl-p-phenylenediamine by-pass is used. NADH oxidation by sub-mitochondrial particles of leukaemic leucocytes is also inhibited by
The effect of methylglyoxal (MG) on the aerobic glycolysis of Ehrlich ascites carcinoma (EAC) cells has been tested. Methylglyoxal inhibited glucose utilization and glucose 6-phosphate (G6P) and L-lactate formation in whole EAC cells. Methylglyoxal strongly inactivated glyceraldehyde 3-phosphate dehydrogenase (GA3PD) of the malignant cells, whereas MG has little inactivating effect on this enzyme from several normal sources. Methylglyoxal also inactivated only the particulate hexominase of the EAC cells, but this inactivation was less pronounced than the effect on GA3PD. Methylglyoxal has little inactivating effect on glucose 6-phosphate dehydrogenase (GIPD), and no effect on L-lactate dehydrogenase (LDH) of the malignant cells. Glucose-dependent L-lactic acid formation of EAC-cell-free homogenate was strongly inhibited by MG, but when GA3PD of normal cells was added to this homogenate, significant lactate formation was observed even in the presence of MG. Methylglyoxal also inhibited the respiration of EAC-cell mitochondria. Respiration of mitochondria isolated from liver and kidney of normal mice, however, remained unaffected. As a consequence of the inhibition of glycolysis and mitochondrial respiration, the ATP level of the EAC cells was drastically reduced. Studies reported herein strongly suggest that the tumoricidal effect of MG is mediated at least in part through the inhibition of mitochondrial respiration and inactivation of GA3PD, and this enzyme may play an important role in the high glycolytic capacity of the malignant cells.o I993 Wilty-Liss, Inc.The growth-inhibitory and carcinostatic actions of MG have been known for a long time. Szent-Gyorgyi (1979), in his pioneering work on the biological role of MG, has put forward strong evidence for the anti-tumor and growth-inhibitory effects of MG. In an extensive study on the effect of MG on tumor growth, Apple and Greenberg (1968) observed that MG inhibited the growth of a wide variety of malignant cells in mice by 90 to 99%.Although MG has been thought for quite a long time to be a normal metabolite, its enzymatic formation and breakdown have not been elucidated till recently. Moreover, the precise biological function of MG has remained obscure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.