In response to an outbreak of coronavirus disease 2019 (COVID-19) within a cluster of Navy personnel in Sri Lanka commencing from 22nd April 2020, an aggressive outbreak management program was launched by the Epidemiology Unit of the Ministry of Health. To predict the possible number of cases within the susceptible population under four social distancing scenarios, the COVID-19 Hospital Impact Model for Epidemics (CHIME) was used. With increasing social distancing, the epidemiological curve flattened, and its peak shifted to the right. The observed or actually reported number of cases was above the projected number of cases at the onset; however, subsequently, it fell below all predicted trends. Predictive modelling is a useful tool for the control of outbreaks such as COVID-19 in a closed community.
Introduction: Infectious diseases such as coronavirus disease 2019 (COVID-19) can spread dangerously fast in semi-confined places. Nevertheless, it has been found that rapid public health interventions such as isolation and quarantine could successfully curtail such outbreaks. An outbreak of COVID-19 was reported within a cluster of Navy personnel in the Western Province of Sri Lanka commencing from 22nd April 2020. An epidemiological investigation followed by aggressive public health measures were implemented by the Epidemiology Unit of the Ministry of Health with the support of the Sri Lanka Navy in response to the above outbreak. The objective of this research was to predict possible number of cases within the susceptible population in Sri Lanka Navy, to be used primarily for operational planning purpose by the Ministry of Health in control of outbreak in Sri Lanka.Methods: COVID-19 Hospital Impact Model for Epidemics (CHIME) developed by Predictive Health Care Team at Penn Medicine, which was a Susceptibility, Infected and Removed (SIR) model was used. The model was run on 20.05.2020 for a susceptible population of 10400, with number of hospitalized patients on the day of running the model being 357, first case hospitalized on 22.04.2020 and social distancing being implemented on 26.04.2020. Social distancing scenarios of 0, 25, 50 and 74% were run with 10 days of infectious period and 30 days of projection period.Results: With increasing social distancing measures, the peak number of infected persons decreased, as well as the duration of the curve extended. The number of infected cases from the first case ranged from 49th day to 54th day under social distancing scenarios from 0% to 74%. The doubling time increased from 3.1 days to 4.1 days from no social distancing to application of 74% social distancing, with corresponding decrease of Ro from 3.54 to 2.83. Expected daily growth rate of COVID-19 cases has decreased from 25.38 % to 18.53% under aforementioned increasing social distancing scenarios. The observed or actually experienced number of cases were well above the projected number of cases up to 07.05.2020, however, since this date the reported number of cases were lower than the projected number of cases from the model under four social distancing scenarios considered. Similar pattern was noted for the observed or actually experienced number of cases until the 20.05.2020, however, since then it was continuing at a very low intensity until the end of the modelling period. The number of COVID-19 cases prevented as per the model ranged from 2.3 – 21.1 %, compared to the base line prediction of no social distancing. However, based on the observed number of cases and the baseline model with no social distancing, 90.3% reduction was observed by the time of the model application date.Conclusion: The research demonstrated the practical use of a prediction model made readily available through an online open source platform for the operational aspects of controlling a COVID-19 or similar communicable disease outbreaks in a closed community such as armed forces. While comprehensive epidemiological surveillance, contact tracing, case isolation and case management should be the cornerstone of outbreak management, predictive modelling could supplement above efforts.
Introduction: Infectious diseases such as coronavirus disease 2019 (COVID-19) can spread contagiously fast in semi-confined places, which demand prompt public health interventions such as isolation and quarantine for their effective control. An outbreak of COVID-19 was reported within a cluster of Navy personnel in the Western Province of Sri Lanka commencing from 22nd April 2020. In response, an aggressive outbreak management program was launched by the Epidemiology Unit of the Ministry of Health supported by the Sri Lanka Navy. The objective of this research was to predict possible number of cases within the susceptible population in Sri Lanka Navy. Methods: COVID-19 Hospital Impact Model for Epidemics (CHIME) developed by Predictive Health Care Team at Penn Medicine, Philadelphia, USA, which was a Susceptibility, Infected and Removed (SIR) model was used. The model was run on 20.05.2020 for a susceptible population of 10400, with number of hospitalized patients on the day of running the model being 357, first case hospitalized on 22.04.2020 and social distancing being implemented on 26.04.2020. Social distancing scenarios of 0, 25, 50 and 74% were run with 10 days of infectious period and 30 days of projection period. Results: With increasing social distancing measures, the peak number of infected persons decreased, and the duration of the curve extended. With increasing social distancing from 0% to 74%, the date on which the peak number of infected cases was reported increased from 49th day to the 54th day, the doubling time increased from 3.1 days to 4.1 days, the Ro decreased from 3.54 to 2.83, and expected daily growth rate decreased from 25.38% to 18.53%. The number of COVID-19 cases prevented as per the model ranged from 2.3 – 21.1 %, compared to the base line prediction of no social distancing. When comparing the observed number of cases with the baseline model with no social distancing, a 90.3% reduction was observed. Conclusion: The research demonstrated the practical use of a prediction model made readily available through an online open-source platform for the operational aspects of controlling outbreaks such as COVID-19 in a closed community. Predictive modelling is a useful tool for outbreak management.
Background – With the onset of COVID-19 pandemic, the government of Sri Lanka took proactive measures to prevent a community outbreak in the country. This paper describes the measures taken by the government in the initial stages to contain the virus, along with the epidemiological characteristics of the first 200 laboratory confirmed COVID-19 patients.Methods – Telephone interviews were conducted for first 200 consecutive patients diagnosed with COVID-19, after obtaining informed verbal consent. Descriptive data are presented as binary variables and in frequency distribution tables.Results- From the diagnosis of the first patient, 76 days elapsed for the first 200 patients to be diagnosed. Majority were males in the 40-49 age group. There were three foreign nationals, while others were Sri Lankans. Among the Sri Lankans, 81 (41.1%) had an overseas travel history. Following implementation of the cohort quarantine concept, 47% of the overseas returnees were reported from quarantine centres. Over two-thirds of the patients presented with symptoms (n=137, 68.5%) and the most common symptoms were fever, cough and sore throat. The case fatality rate for the sample was 3.5%. out of the 200 patients, 103 (51.5%) were primary patients, while 92 (46%) were secondary patients. The source of exposure could not be determined for five patients. Conclusions – Due to measures instigated by the government, such as cohort quarantining, extensive contact tracing and testing of close contacts, Sri Lanka was able to prevent a wide spread community outbreak of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.