Population of the world run into several health-related emergencies among mankind and humans as it creates a challenge for the evolution of novel drug discoveries. One such can be the emergence of multidrug-resistant (MDR) strains in both hospital and community settings, which have been due to an inappropriate use and inadequate control of antibiotics that has led to the foremost human health concerns with a high impact on the global economy. So far, there has been application of two strategies for the development of anti-infective agents either by classical antibiotics that have been derived for their synthetic analogs with increased efficacy or screening natural compounds along with the synthetic compound libraries for the antimicrobial activities. However, need for newer treatment options for infectious diseases has led research to develop new generation of antimicrobial activity to further lessen the spread of antibiotic resistance. Currently, the principles aim to find novel mode of actions or products to target the specific sites and virulence factors in pathogens by a series of better understanding of physiology and molecular aspects of the microbial resistance, mechanism of infection process, and gene-pathogenicity relationship. The design various novel strategies tends to provide us a path for the development of various antimicrobial therapies that intends to have a broader and wider antimicrobial spectrum that helps to combat MDR strains worldwide. The development of antimicrobial peptides, metabolites derived from plants, microbes, phage-based antimicrobial agents, use of metal nanoparticles, and role of CRISPR have led to an exceptional strategies in designing and developing the next-generation antimicrobials. These novel strategies might help to combat the seriousness of the infection rates and control the health crisis system.
Mobile phones have become an indispensable part of human lives for communication, education, and entertainment activities. This study aims to evaluate the diversity pattern of bacterial contaminants on mobiles and to check antibiotic resistance profiles in 105 samples. The study revealed a contamination of 51% in men and 49% in women, the highest in the 21- to 30-year age group, evidencing the extreme use of mobiles by teenagers. The study observed Gram-negative bacteria (63%) versus Gram-positive bacteria (37%). Overall, Gram-negative bacterial isolates showed the highest sensitivity to antibiotic nitrofurantoin (90%) and the lowest in ampicillin (35%). Gram positive has highest incidence of sensitivity towards tigecycline (100%) and lowest in cefoxitin (20%). ESβL producers were found to be 21.0% and highest being in Klebsiella oxytoca (35%) followed by Klebsiella pneumonia (31%). Staphylococcus pseudintermedius and Staphylococcus capitis have been identified on the mobile phones for the very first time. Interestingly, some soil microbes were also isolated and unfortunately found to have some antibiotic resistance like Raoultella ornithinolytica and Sphingomonas paucimobilis. The results revealed that mobiles were contaminated with multidrug-resistant (MDR) pathogens, and this study also showed that few of the saprophytic soil strains have antibiotic resistance, which can be an alarming situation that needs to be addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.