SUMMARY
Malignant melanoma is characterized by frequent metastasis, however specific changes that regulate this process have not been clearly delineated. Although it is well known that Wnt signaling is frequently dysregulated in melanoma, the functional implications of this observation are unclear. By modulating β-catenin levels in a mouse model of melanoma that is based on melanocyte-specific Pten loss and BrafV600E mutation, we demonstrate that β-catenin is a central mediator of melanoma metastasis to lymph node and lung. In addition to altering metastasis, β-catenin levels control tumor differentiation and regulate both MAPK/Erk and PI3K/Akt signaling. Highly metastatic tumors with β-catenin stabilization are very similar to a subset of human melanomas. Together these findings establish Wnt signaling as a metastasis regulator in melanoma.
SUMMARY
BrafV600E induces benign, growth-arrested melanocytic nevus development, but also drives melanoma formation. Cdkn2a loss in BrafV600E melanocytes in mice results in rare progression to melanoma, but only after stable growth arrest as nevi. Immediate progression to melanoma is prevented by upregulation of miR-99/100 which downregulates mTOR and IGF1R signaling. mTORC1 activation through Stk11 (Lkb1) loss abrogates growth-arrest of BrafV600E melanocytic nevi, but is insufficient for complete progression to melanoma. Cdkn2a loss is associated with mTORC2 and Akt activation in human and murine melanocytic neoplasms. Simultaneous Cdkn2a and Lkb1 inactivation in BrafV600E melanocytes results in activation of both mTORC1 and mTORC2/Akt, inducing rapid melanoma formation in mice. In this model, activation of both mTORC1/2 is required for Braf-induced melanomagenesis.
During RBC transfusion, production of alloantibodies against RBC non-ABO Ags can cause hemolytic transfusion reactions and limit availability of compatible blood products, resulting in anemia-associated morbidity and mortality. Multiple studies have established that certain inflammatory disorders and inflammatory stimuli promote alloimmune responses to RBC Ags. However, the molecular mechanisms underlying these findings are poorly understood. Type I IFNs (IFN-α/β) are induced in inflammatory conditions associated with increased alloimmunization. By developing a new transgenic murine model, we demonstrate that signaling through the IFN-α/β receptor is required for inflammation-induced alloimmunization. Additionally, mitochondrial antiviral signaling protein—mediated signaling through cytosolic pattern recognition receptors was required for polyinosinic-polycytidylic acid—induced IFN-α/β production and alloimmunization. We further report that IFN-α, in the absence of an adjuvant, is sufficient to induce RBC alloimmunization. These findings raise the possibility that patients with IFN-α/β—mediated conditions, including autoimmunity and viral infections, may have an increased risk of RBC alloimmunization and may benefit from personalized transfusion protocols and/or targeted therapies.
In contrast, transfused RBCs with the KEL glycoprotein antigen fully intact continued to circulate for days in double-KO mice despite treatment with immunoprophylaxis. Further, in vitro phagocytosis assays showed no consumption of opsonized murine RBCs by double-KO splenocytes. Taken in combination, our data suggest that modulation of the KEL antigen (and potentially RBC clearance) by redundant recipient pathways involving both FcgRs and C3 may be critical to the mechanism of action of polyclonal anti-KEL immunoprophylaxis. These findings could have implications for the development of immunoprophylaxis programs in humans. (Blood. 2016;128(26):3159-3168)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.