In this paper, ultra-thin metalenses are proposed to generate converging and non-diffractive vortex beam carrying orbital angular momentum (OAM) in microwave region. Phase changes are introduced to the transmission cross-polarized wave by tailoring spatial orientation of Pancharatnam-Berry phase unit cell. Based on the superposition of phase profile of spiral phase plate and that of a converging lens or an axicon, vortex beam carrying OAM mode generated by the metalens can also exhibit characteristics of a focusing beam or a Bessel beam. Measured field intensities and phase distributions at microwave frequencies verify the theoretical design procedure. The proposed method provides an efficient approach to control the radius of vortex beam carrying OAM mode in microwave wireless applications for medium-short range distance.
In modern complex battlefield environment, it is important to obtain the frequency spectrum precisely. We propose an operational method of instantaneous frequency measurement (IFM) assisted by photonics, which can achieve high precision based on stimulated Brillouin scattering (SBS), giving the credit to the narrow linewidth of gain spectrum of SBS. We use MZM and DPMZM cascade to generate a tunable continuous optical signal and modulate the measured signal to the continuous optical signal and a DPMZM is used to generate pump light, the two beams of light are injected into the fiber, the stimulated Brillouin scattering (SBS) effect occurs in the optical fiber and the Brillouin gain spectrum (BGS) is formed. By setting the scanning frequency, the Brillouin gain varies with frequency and the amplitude comparison function (ACF) can be formed in the narrow line band of BGS. And the measurement of full frequency band is realized through a reference signal, the measured frequency range is limited only by photoelectric device. Estimation of multiple radio-frequency (RF) signals can also be achieved with a resolution of 250 MHz. In the numerical simulation, the average measurement error less than 1 MHz is achieved in this scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.