Aluminium has played a significant role in the advancement of metal matrix composites (MMC) and has drawn the attention of researchers since Al composites find extensive application in aerospace, military and automobile industries. This paper describes the corrosion property of 6061 Al-15 vol%. SiC(p) composites in hydrochloric acid medium. This composite with high strength-to-weight ratio and other alluring properties undergoes corrosion in acid media and a study has been made in 0.5 M hydrochloric acid using (2Z)-2-(2-hydroxy-3methoxybenzylidene) hydrazinecarbothioamide (HCT) as an inhibitor. Results of the electrochemical studies and surface morphology are presented. With the increase in HCT concentration, inhibition efficiency increased. But efficiency decreased with an increase in temperature. The maximum efficiency was found to be 56.8% for the addition of 10 × 10–5 M HCT concentration at 303 K. The inhibitor was found to behave as a mixed inhibitor affecting both anodic metal dissolution reaction and cathodic hydrogen evolution to the same extent. The HCT molecules were found to physisorb over the Al-composite surface and adsorption followed Langmuir’s adsorption isotherm. Adsorption of HCT was confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Computational studies using density functional theory (DFT) supported experimental findings. Density functional theory calculations gave a clear insight into the mechanistic aspects of corrosion inhibition. Graphic Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.